In this study, we aimed to evaluate the inhibitory effect of baicalin on Escherichia coli in vitro and the effects of baicalin treatment on antimicrobial resistance of the E. coli isolates. Through isolation, purification, and identification, a total of 56 E. coli strains were isolated from 341 mastitic milk samples. The study of inhibition effect of baicalin on the E. coli strains in vitro was focused on permeability and morphology of the isolates using an alkaline phosphatase kit and scanning electron microscopy. Furthermore, the resistance spectrum of the isolates to the common antimicrobial agents was tested at sub-minimum inhibitory concentrations of baicalin by the agar dilution method. Extended-spectrum β-lactamase and plasmid-mediated quinolone resistance genes were amplified by PCR before and after incubation with baicalin. The results revealed that baicalin has certain inhibitory effects on the isolates in vitro. The alkaline phosphatase enzyme activity was significantly increased from 1.246 to 2.377 U/100 mL, and the surface of E. coli was concave and shriveled. Analysis of the resistance spectrum and PCR amplification showed that, after administration with baicalin, the sensitivity of most strains to the selected antimicrobial agents was enhanced. Strikingly, the drug-resistant genes from 71.43% (40/56) of these isolates were found to have drug-resistant genes to different extents. Altogether, the current study confirmed both the inhibitory effect on Escherichia coli in vitro and the reduction of antimicrobial resistance by baicalin. This is the first comprehensive study to report on baicalin, a traditional Chinese medicine that acts on E. coli isolated from the mastitic milk samples.
BackgroundIntestinal infections with Escherichia coli (E. coli) are mostly occur in piglets between 1~10 days old, which major lead to diarrhea and edema in newborn piglets. These diseases caused by E. coli can increase mortality, morbidity and growth delay of piglets, which are responsible for economic losses. In this study was to investigate the prevalence of antibiotic resistance, transmission mechanisms, and molecular epidemiology of E. coli strains isolated from pig farms in Hubei province. Furthermore, clonal and genetic diversity of isolates were identified. ResultsA total of 29 E. coli isolates were obtained from fecal of weaned piglets from Hubei province. The E. coli isolates in different regions demonstrate different genetic diversity. Multilocus sequence typing (MLST) presented that ST165 was the common sequence type, accounting for 27.6% of all E. coli isolates, followed by ST744, ST1081, ST101 and ST10. All of the isolates were resistant to the tested antibiotics to vary degrees, and more than 80% of E. coli isolates presented high resistance rates to ampicillin, lincomycin, doxycycline, tetracycline, sulfaisoxazole and ampicillin. There was one E. coli strain that was resistant to the fifteen antimicrobial agents tested. Overall, most of the isolates were conferring resistance to 5-7 antimicrobial agents tested.ConclusionsOur study reported E. coli isolates with high antimicrobial resistance and explores the genetic diversity of E. coli isolated from swine-origin. From the results obtained it can be concluded that these isolates present high prevalent multi-drug resistance. These data provide a greater understanding of the genetic diversity and antimicrobial resistance of E. coli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.