Antibiotics resistance in Helicobacter pylori (H. pylori) is the major factor for eradication failure. Molecular tests including fluorescence in situ hybridization, PCR-restriction fragment length polymorphism, and dual priming oligonucleotide-PCR (DPO-PCR) play critical roles in the detection of antibiotic susceptibility; however, limited knowledge is known about application of multiple genetic analysis system (MGAS) in the area of H. pylori identification and antibiotics resistance detection.The aim of this study is to determine the antibiotics resistance using different molecular tests and evaluate the treatment outcomes of E-test-based genotypic resistance.A total of 297 patients with dyspepsia complaint were recruited for gastroscopies. Ninety patients with H. pylori culture positive were randomly divided into 2 groups (test group and control group). E-test, general PCR, and MGAS assay were performed in test group. Patients in control group were treated with empirical therapy (rabeprazole + bismuth potassium citrate + amoxicillin [AMX] + clarithromycin [CLR]), whereas patients in test group received quadruple therapy based on E-test results twice daily for 14 consecutive days. The eradication effect of H. pylori was confirmed by 13C-urea breath test after at least 4 weeks when treatment was finished.Rapid urease test showed 46.5% (128/297) patients with H. pylori infection, whereas 30.3% (90/297) patients were H. pylori culture positive. E-test showed that H. pylori primary resistance rate to CLR, AMX, metronidazole, tetracycline, and levofloxacin (LVX) was 40.0% (18/45), 4.4% (2/45), 53.3% (24/45), 0% (0/45), and 55.6% (25/45), respectively. In addition, there are many multidrug resistant (MDR) phenotypes, and the MDR strains have higher minimum inhibitory concentration than their single-drug resistant counterparts. Considering E-test as the reference test, the sensitivities of general PCR and MGAS in detecting CLR resistance were 83.3% (15/18) and 94.4% (17/18), whereas in detecting LVX resistance were 100% (25/25) and 83.3% (15/18), respectively. Finally, the eradication rate in test group was significantly higher than that in control group as demonstrated by intention-to-treat analysis and per-protocol analysis.MGAS is a promising assay for H. pylori identification and antibiotic susceptibility testing. Phenotypic resistance-guided quadruple therapy showed a high efficacy in treating patients with H. pylori infection.
Recent evidence shows that moxifloxacin could exert an antimicrobial effect against Helicobacter pylori in both in vitro and in vivo models. To systematically evaluate whether moxifloxacin-containing triple therapy could improve eradication rates and reduce side effects in first-line or second-line anti-H. pylori treatment, eligible articles were identified by searches of electronic databases. We included all randomized trials comparing moxifloxacin-based triple therapy with standard triple or quadruple therapy during H. pylori eradication treatment. Statistical analysis was performed with Review Manager 5.0.10. Subanalysis/sensitivity analysis was also performed. We identified seven randomized trials (n=1263). Pooled H. pylori eradication rates were 79.03% (95%CI: 75.73-82.07) and 68.33% (95%CI: 64.44-72.04) for patients with moxifloxacin-based triple therapy or with standard triple or quadruple therapy, respectively (intention-to-treat analysis). The odds ratio (OR) was 1.82 (95%CI: 1.17-2.81), the occurrence of total side effects was 15.23% (95%CI: 12.58-18.20) and 27.17% (95%CI: 23.64-30.92) for groups with or without moxifloxacin, and the summary OR was 0.45 (95%CI: 0.26-0.77). In subgroup analyses, we noted that the second-line eradication rate in the moxifloxacin group was significantly higher than that in the quadruple therapy group (73.33 vs 60.17%, OR: 1.78, 95%CI: 1.16-2.73, P<0.001). However, there was no difference in first-line eradication treatment. Findings from this meta-analysis suggest that moxifloxacin-based triple therapy is more effective and better tolerated than standard triple or quadruple therapy. Therefore, a moxifloxacin-based triple regimen should be used in the second-line treatment of H. pylori infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.