Rainfall interception loss plays an important role in ecohydrological processes in dryland shrub ecosystems, but its drivers still remain poorly understood. In this study, a statistical model was developed to simulate interception loss based on the mass balance measurements arising from the partitioning of rainfall in 2 dominant xerophytic shrub (Hippophae rhamnoides and Spiraea pubescens) communities in the Loess Plateau. We measured throughfall and stemflow in the field under natural rainfall, calculated the canopy storage capacity in the laboratory, and identified key factors controlling these components for the 2 shrubs. We quantified and scaled up the stemflow and the canopy storage capacity measurements from the branches and/or leaves to stand level. The average interception loss, throughfall, and stemflow fluxes account for 24.9%, 72.2%, and 2.9% of the gross rainfall for H. rhamnoides, and 19.2%, 70.7%, and 10.1% for S. pubescens, respectively. Throughfall increased with increasing rainfall for both shrubs; however, it was only correlated with the leaf area index for S. pubescens. For stemflow measured from individual branches, we found that the rainfall amount and basal diameter are the best predictors for H. rhamnoides, whereas rainfall amount and branch biomass appear to be the best predictors for S. pubescens. At the stand level, stemflow production is affected by the rainfall amount for H. rhamnoides, and it is affected by both the rainfall amount and the leaf area index for S. pubescens. The canopy storage capacity of H. rhamnoides (1.07–1.28 mm) was larger than S. pubescens (0.88–1.07 mm), and it is mainly determined by the branches and stems of H. rhamnoides and the leaves of S. pubescens. The differences in interception loss between the 2 shrub stands are mainly attributed to different canopy structures that induced differences in stemflow production and canopy storage. We evaluated the effects of canopy structure on rainfall interception loss, and our developed model provides a better understanding of the effects of the canopy structure on the water cycles in dryland shrub ecosystems.
Seasonal variations in terrestrial evapotranspiration (ET) in the Yellow River Basin (YRB) have crucial impacts on the seasonal trajectories of the regional water cycle, vegetation growth, and local climate feedback. However, the possibly divergent roles of climate and vegetation growth variations in controlling seasonal ET patterns remain poorly quantified. This study therefore quantifies the interannual sensitivity and attribution of ET to climate and vegetation growth variations in different seasons and different biomes in the YRB in China between 1982 and 2011, using the satellite‐derived normalized difference vegetation index (NDVI), FLUXNET‐based upscaled ET, and concurrent climate data. The results reveal a clear seasonal divergence in the interannual sensitivity of ET to climate and vegetation growth variations in the YRB. Interannual precipitation and NDVI variations play a dominant role in controlling seasonal ET variations in the YRB, with temperature having a marginal effect. Interannual ET sensitivity to precipitation weakens with an increasing mean annual precipitation gradient in almost all seasons, especially in summer and autumn. More importantly, a seasonally varying role of vegetation growth in mediating seasonal ET was discovered, and a crucial role of late‐growing‐season vegetation growth in controlling the seasonal trajectory of regional ET was explicitly identified. These results suggest that ongoing intensive vegetation restoration has crucial impacts on seasonal water‐cycle patterns and consequent terrestrial‐atmospheric biogeochemical feedback in the YRB.
Aim: Encroachment of woody plants into grasslands and savannas (WPE) has been observed world-wide. However, the general ecohydrological effects of this striking change in land cover are uncertain owing to divergent results in various areas and unknown global spatial distribution. Here, we reveal the patterns and dynamics of WPE and its effects on leaf area index (LAI), gross primary production (GPP), components of evapotranspiration (ET) and ecosystem water-use efficiency (EWUE). Location: Global. Time period: Contemporary. Major taxa studied: Woody plants. Methods: We used remote sensing to identify the distribution of WPE in 2002-2018, validated at 442 WPE sites, and analysed the pattern of WPE across geographical gradients. The multi-time-scale impacts of WPE were revealed through pairwise comparison. Differences among biomes/climate zones were compared by the Kruskal-Wallis test. The relationship of WPE to vegetation greening and the effects of WPE on EWUE were explored. Results: Global WPE expanded persistently from 2002 to 2018, but the rate of increase decreased after 2010; spatially, the average rate of change was .3%/year. High values of WPE in 2018 occurred in arid and semi-arid regions, with the peak WPE in the multi-annual mean precipitation of 350-400 mm. Pairwise comparison showed that WPE increased the LAI, GPP, ET and ratio of transpiration to ET, with the strongest effects in summer, and enhanced annual EWUE. Both global pixel-and site-level WPE mainly showed vegetation greening. The above findings varied among bioclimatic conditions; particularly in semi-arid areas, WPE was positively correlated with vegetation greening and remarkably improved EWUE. Main conclusions: The ongoing WPE contributed to vegetation greening and elevated vegetation productivity by increasing the LAI and partitioning more water into transpiration; these findings indicate that the WPE process should be incorporated into the carbon cycle and ecohydrology models. However, attention should also be focused on controlling adverse consequences of WPE in arid areas.
Ecosystem water use efficiency (WUE) acts as an integrated functional indicator for understanding land‐atmosphere interactions. The temporal patterns in the daily variations of WUE and their underlying drivers during different seasons in alpine meadow ecosystems, which are particularly vulnerable to changing climate, still remain poorly understood in spite of increasing efforts. In this study, we investigated the potential divergence in the response of WUE to climatic and biological drivers during different seasons at two alpine meadow ecosystems in the northeastern Tibetan Plateau using continuous eddy‐covariance measurements of carbon and water fluxes between 2013 and 2015. We found that variations in CO2 concentration exert significantly positive effects on variations in WUE in spring, but not in summer and autumn. Notably, vapor pressure deficit (VPD) overrode other factors playing a dominant role in regulating daily variations in WUE during all seasons in these alpine meadow ecosystems. Variations in VPD explained 29.5 to 52.3% of the variance in WUE between different seasons. We further showed that carbon gain and water loss processes responded divergently to different drivers; higher VPD significantly increased ecosystem evapotranspiration; whereas, variations in soil moisture and leaf area index significantly and positively affected gross primary productivity. Our findings highlighted the increasing importance of atmospheric drought in shaping land‐atmosphere interactions in alpine meadow ecosystems, particularly in a warming climate.
Understanding the seasonality of the transpiration fraction (T/ET) of total terrestrial evapotranspiration (ET) is vital for coupling ecological and hydrological systems and quantifying the heterogeneity among various ecosystems. In this study, a two‐source model was used to estimate T/ET in five ecosystems over the Heihe River Basin. In situ measurements of daily energy flux, sap flow, and surface soil temperature were compared with model outputs for 2014 and 2015. Agreement between model predictions and observations demonstrates good performance in capturing the ecosystem seasonality of T/ET. In addition, sensitivity analysis indicated that the model is insensitive to errors in measured input variables and parameters. T/ET among the five sites showed only slight interannual fluctuations while exhibited significant seasonality. All the ecosystems presented a single‐peak trend, reaching the maximum value in July and fluctuating day to day. During the growing season, average T/ET was the highest for the cropland ecosystem (0.80 ± 0.13), followed by the alpine meadow ecosystem (0.79 ± 0.12), the desert riparian forest Populus euphratica (0.67 ± 0.07), the Tamarix ramosissima Ledeb desert riparian shrub ecosystem (0.67 ± 0.06), and the alpine swamp meadow (0.55 ± 0.23). Leaf area index exerted a first‐order control on T/ET and showed divergence among the five ecosystems because of different vegetation dynamics and environmental conditions (e.g., water availability or vapor pressure deficits). This study quantified transpiration fraction across diverse ecosystems within the same water basin and emphasized the biotic controls on the seasonality of the transpiration fraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.