Quality of Service (QoS) prediction for Web services is a hot research topic in the field of services computing. Recently, representation learning of heterogeneous networks has attracted much attention, and specifically the relationship between users and services, as a typical heterogeneous network in which heterogeneity and rich semantic information provide a new perspective for QoS prediction. This paper proposes a novel QoS Prediction scheme based on a heterogeneous graph attention network. Our method first unitizes the user's location information to construct an attributed user-service network. Then, considering the difference between nodes and links in the latter network, we model a heterogeneous graph neural network based on a hierarchical attention machine (HGN2HIA) that includes node-and semanticlevel attentions. Specifically, node-level attention aims to learn the importance between a node and its meta-path-based neighbors, while semantic-level attention learns the importance of different meta-paths. Finally, user embedding will be generated by aggregating features from meta-path-based neighbors in a hierarchical manner, used for QoS prediction. Experimental results on the public WS-Dream dataset demonstrate the superior performance of the proposed model over the current state-of-the-art methods, with NMAE and RMSE metrics reduced by at least 2.56% and 1.3%, respectively. Furthermore, the experimental results highlight that node-level attention contributes more than semantic-level. Overall, we demonstrate that introducing these attention levels improves the QoS prediction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.