The current paper presents the results of an experimental study of carbon nano-, micro-, and hybrid-modified cementitious mortar to evaluate mechanical performance, energy absorption, electrical conductivity, and piezoresistive sensibility. Three amounts of single-walled carbon nanotubes (SWCNTs), namely 0.05 wt.%, 0.1 wt.%, 0.2 wt.%, and 0.3 wt.% of the cement mass, were used to prepare nano-modified cement-based specimens. In the microscale modification, 0.05 wt.%, 0.5 wt.%, 1.0 wt.% carbon fibers (CFs) were incorporated in the matrix. The hybrid-modified cementitious specimens were enhanced by adding optimized amounts of CFs and SWCNTs. The smartness of modified mortars, indicated by their piezoresistive behavior, was investigated by measuring the changes in electrical resistivity. The effective parameters that enhance the composites’ mechanical and electrical performance are the different concentrations of reinforcement and the synergistic effect between the types of reinforcement used in the hybrid structure. Results reveal that all the strengthening types improved flexural strength, toughness, and electrical conductivity by about an order of magnitude compared to the reference specimens. Specifically, the hybrid-modified mortars presented a marginal reduction of 1.5% in compressive strength and an increase in flexural strength of 21%. The hybrid-modified mortar absorbed the most energy, 1509%, 921%, and 544% more than the reference mortar, nano-modified mortar, and micro-modified mortar, respectively. The change rate of impedance, capacitance, and resistivity in piezoresistive 28-day hybrid mortars improved the tree ratios by 289%, 324%, and 576%, respectively, for nano-modified mortars and by 64%, 93%, and 234%, respectively, for micro-modified mortars.
This experimental study presents the effect of different surfactants on micro-scale carbon fiber (CFs) distribution into carbon fiber reinforced cement-based composites (CFRC) in terms of flexural and compressive strength, stiffness, flexural toughness, and strain-sensing ability. Conducting a narrative review of the literature focusing on the fibers’ separation, this paper follows a methodology introducing a combination of mechanical and chemical carbon fibers dispersion, as well as the different mixing processes (wet or dry). Three types of surfactants: Carboxymethyl cellulose (CMC), cellulose nanocrystal (CNC), and superplasticizer (SP), were applied to evaluate the CFs distribution in the cement paste matrix. Compressive and flexural strength, modulus of elasticity, and ductility of the cement-based composites (CFRC) reinforced with 0.5 wt.% CFs were investigated by three-point bending and compressive tests; flexure tests were also conducted on notched 20 × 20 × 80 mm specimens using the Linear Elastic Fracture Mechanics (L.E.F.M.) theory. Moreover, the electrical conductivity and the piezoresistive response were determined by conducting electrical resistance measurements and applying compressive loading simultaneously. The results clearly reveal that the CFs/SP solution or the CFs’ dry incorporation led to a significant enhancement of flexural strength by 32% and 23.7%, modulus of elasticity by 30% and 20%, and stress-sensing ability by 20.2% and 18.2%, respectively. Although the wet mixing method exhibits improved mechanical and electrical conductivity performance, constituting an adequate strain and crack sensor, the authors propose dry mixing as the most economical method, in addition to the enhanced mechanical and electrical responses. The authors recommend an effective method for structural health monitoring systems combining an economical CFs insertion in cementitious smart sensors with great mechanical and self-sensing responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.