Panoramic videos are shot by an omnidirectional camera or a collection of cameras, and can display a view in every direction. They can provide viewers with an immersive feeling. The study of super-resolution of panoramic videos has attracted much attention, and many methods have been proposed, especially deep learning-based methods. However, due to complex architectures of all the methods, they always result in a large number of hyperparameters. To address this issue, we propose the first lightweight super-resolution method with self-calibrated convolution for panoramic videos. A new deformable convolution module is designed first, with self-calibration convolution, which can learn more accurate offset and enhance feature alignment. Moreover, we present a new residual dense block for feature reconstruction, which can significantly reduce the parameters while maintaining performance. The performance of the proposed method is compared to those of the state-of-the-art methods, and is verified on the MiG panoramic video dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.