The molecular dynamics method was used to study the effect of temperature on the tension–compression asymmetry and Bauschinger effect of nano single crystal aluminum (NSCA).
The crack propagation mechanism of Cu nanowires is investigated by using molecular dynamics methods. The microstructural evolution of crack propagation at different strain rates and crack depths is analyzed. Meanwhile, the stress intensity factor at the crack tip during crack propagation is calculated to describe the crack propagation process of Cu nanowires under each condition. The simulation results show that the competition between lattice recovery and dislocation multiplication determines the crack propagation mode. Lattice recovery dominates the plastic deformation of Cu nanowires at low strain rates, and the crack propagation mode is shear fracture. With the increase in strain rate, the plastic deformation mechanism gradually changes from lattice recovery to dislocation multiplication, which makes the crack propagation change from shear fracture to ductile fracture. Interestingly, the crack propagation mechanism varies with crack depth. The deeper the preset crack of Cu nanowires, the weaker the deformation resistance, and the more likely the crack propagation is accompanied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.