Background: Competing endogenous RNA (ceRNA) networks play important roles in the mechanism and development of a variety of diseases. This study aimed to construct a ceRNA network of hypertrophic cardiomyopathy (HCM). Methods:We searched the Gene Expression Omnibus (GEO) database and then analyzed the RNAs of 353 samples to explore differentially expressed lncRNAs (DELs), microRNAs (miRNAs; DEMs), and messenger RNAs (DEmRNAs) during the progression of HCM. Weighted gene co-expression network analysis (WGCNA), Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and transcription factor (TF) prediction of miRNAs were also performed, and the GO terms, KEGG pathway terms, protein-protein interaction (PPI) network, and Pearson correlation network of the DEGs were visualized with the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database and through Pearson analysis. In addition, a ceRNA network related to HCM was constructed on the basis of the DELs, DEMs, and DEs. Finally, the function of the ceRNA network was explored via GO and KEGG enrichment analyses.Results: Through our analysis, 93 DELs (77 upregulated and 16 downregulated), 163 DEMs (91 upregulated and 72 downregulated), and 432 DEGs (238 upregulated and 194 downregulated) were screened.The functional enrichment analysis results for miRNAs showed that the miRNAs were mainly related to the VEGFR signaling network and the INFr pathway and were mainly regulated by TFs such as SOX1, TEAD1, and POU2F1. Gene set enrichment analysis (GSEA), GO analysis, and KEGG enrichment analysis showed that the DEGs were enriched in the Hedgehog signaling pathway, IL-17 signaling pathway, and TNF signaling pathway. In addition, a ceRNA network including 8 lncRNAs (e.g., LINC00324, SNHG12, and ALMS1-IT1), 7 miRNAs (e.g., hsa-miR-217, hsa-miR-184, and hsa-miR-140-5p), and 52 mRNAs (e.g., IGFBP5, TMED5, and MAGT1) was constructed. The results revealed that SNHG12, hsa-miR-140-5p, hsa-miR-217, TFRC, HDAC4, TJP1, IGFBP5, and CREB5 may form an important network involved in the pathology of HCM. Conclusions:The novel ceRNA network that we have demonstrated will provide new research points about molecular mechanisms of HCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.