Background:To evaluate the anticancer efficacy of the combination of epigenetic modifiers and cisplatin in human ovarian cancer.Methods:The effect of trichostatin A (TSA) and 5-aza-2′-deoxycytidine alone or in combination with low-dose cisplatin was evaluated on human ovarian cancer cell lines in vitro. We measured drug interaction by MTS assay, migration by transwell assay, expression of epithelial to mesenchymal transition (EMT) markers (Twist, Snail, Slug, E-cadherin, and N-cadherin), pluripotency markers (Oct4, Sox2, and Nanog), and epigenetic markers (DNMT3A, LSD1 and H3K4me2, H3K4me3, H3K9me2, and H3K9me3) by western blot, and the impact on and characteristics of spheroid growth when exposed to these drugs. Mouse xenografts were used to evaluate the anticancer effect of sequential drug treatment.Results:Combination treatment had greater efficacy than single drugs and significantly suppressed cell viability, migration, and spheroid formation and growth. Sequential treatment of cisplatin (1 mg kg−1) followed by TSA (0.3 mg kg−1) significantly suppressed tumorigenicity of HEY xenografts through inhibition of EMT and decreased pluripotency of ovarian cancer cells.Conclusion:Epigenetic modifiers potentiate the anticancer efficacy of low-dose cisplatin in ovarian cancer through regulation of EMT and pluripotency, and may provide a promising treatment for ovarian cancer patients.
Nicotine is proved to be an important factor for cardiac hypertrophy. Autophagy is important cell recycling system involved in the regulation of cardiac hypertrophy. Cilostazol, which is often used in the management of peripheral vascular disease. However, the effects of cilostazol on nicotine induced autophagy and cardiac hypertrophy are unclear. Here, we aim to determine the role and molecular mechanism of cilostazol in alleviating nicotine-induced cardiomyocytes hypertrophy through modulating autophagy and the underlying mechanisms. Our results clarified that nicotine stimulation caused cardiomyocytes hypertrophy and autophagy flux impairment significantly in neonatal rat ventricular myocytes (NRVMs), which were evidenced by augments of LC3-II and p62 levels, and impaired autophagosomes clearance. Interestingly, cathepsin B (CTSB) activity decreased dramatically after stimulation with nicotine in NRVMs, which was crucial for substrate degradation in the late stage of autophagy process, and cilostazol could reverse this effect dramatically. Intracellular ROS levels were increased significantly after nicotine exposure. Meanwhile, p38MAPK and JNK were activated after nicotine treatment. By using ROS scavenger N-acetyl-cysteine (NAC) could reverse the effects of nicotine by down-regulation the phosphorylation of p38MAPK and JNK pathways, and pretreatment of specific inhibitors of p38MAPK and JNK could restore the autophagy impairment and cardiomyocytes hypertrophy induced by nicotine. Moreover, CTSB activity of lysosome regained after the treatment with cilostazol. Cilostazol also inhibited the ROS accumulation and the activation of p38MAPK and JNK, which providing novel connection between lysosome CTSB and ROS/p38MAPK/JNK related oxidative stress pathway. This is the first demonstration that cilostazol could alleviate nicotine induced cardiomyocytes hypertrophy through restoration of autophagy flux by activation of CTSB and inhibiting ROS/p38/JNK pathway, exhibiting a feedback loop on regulation of autophagy and cardiomyocytes hypertrophy.
Abstract. Ovarian cancer is one of the most lethal female malignancies and epigenetic abnormalities are thought to play a vital role in the pathogenesis, development and progression of ovarian cancer. Our goal was to investigate whether the combination of trichostatin A (TSA) and 5-aza-2'-deoxycytidine (decitabine) was superior to single agent on tumorigenicity of ovarian cancer cells. We found that tumorigenicity and metastasis of SKOV3 cells were significantly suppressed by the combination of TSA and decitabine in xenograft mouse models. Migration capacity was markedly suppressed through the induction of E-cadherin and suppression of N-cadherin when treated with TSA and decitabine. Invasion was also suppressed at least partially through inhibition of MMP-2 and MMP-9 with the combined treatment. The combination drugs markedly inhibited spheroid formation and significantly impaired migration and invasion capacity of spheroid derived cells through inhibition of Twist, N-cadherin, MMP-2, MMP-9 and induction of E-cadherin. Epigenetically, the activity of DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) were markedly inhibited when TSA was used in combination with decitabine, especially the expression of DNMT3A/3B and HDAC1/2. Acetylation of histone H3 and H4 were more markedly stimulated with the combination than with either agent alone. The expression level of lysine-specific demethylase-1 (LSD1) was also suppressed. The transcription activity marker dimethylated-H3K4 was induced, but the dimethylated-H3K9 was suppressed by exposure to the combined drugs. These results suggest that the combination of TSA and decitabine significantly suppresses tumorigenicity by inhibiting migration and invasion of ovarian cancer cells via regulating the expression of the cadherins and MMPs, which may be epigenetically regulated by DNA methylation and histone modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.