Identifying molecular alterations occurring during cancer progression is essential for a deeper understanding of the underlying biological processes. Here we have analyzed cancerous and healthy prostate biopsies using nanoLC-MS(MS) to detect proteins with altered expression and N-glycosylation. We have identified 75 proteins with significantly changing expression during disease progression. The biological processes involved were assigned based on protein–protein interaction networks. These include cellular component organization, metabolic and localization processes. Multiple glycoproteins were identified with aberrant glycosylation in prostate cancer, where differences in glycosite-specific sialylation, fucosylation, and galactosylation were the most substantial. Many of the glycoproteins with altered N-glycosylation were extracellular matrix constituents, and are heavily involved in the establishment of the tumor microenvironment.
Lung cancer is the leading cause of tumor-related mortality, therefore significant effort is directed towards understanding molecular alterations occurring at the origin of the disease to improve current treatment options. The aim of our pilot-scale study was to carry out a detailed proteomic analysis of formalin-fixed paraffin-embedded tissue sections from patients with small cell or non-small cell lung cancer (adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). Tissue surface digestion was performed on relatively small cancerous and tumor-adjacent normal regions and differentially expressed proteins were identified using label-free quantitative mass spectrometry and subsequent statistical analysis. Principal component analysis clearly distinguished cancerous and cancer adjacent normal samples, while the four lung cancer types investigated had distinct molecular profiles and gene set enrichment analysis revealed specific dysregulated biological processes as well. Furthermore, proteins with altered expression unique to a specific lung cancer type were identified and could be the targets of future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.