BackgroundInterleukin-8 (IL-8) plays a vital role in the invasion and metastasis of hepatocellular carcinoma (HCC), and is closely associated with poor prognosis of HCC patients. Integrin αvβ3, a member of the integrin family, has been reported to be overexpressed in cancer tissues and mediate the invasion and metastasis of HCC cells. However, the relationship between IL-8 and integrin αvβ3 in HCC and the underlying mechanism of IL-8 and integrin αvβ3 in the invasion of HCC remains unclear.MethodsThe expression of IL-8, integrin αv and integrin β3 in HCC cells and tissues was detected by quantitative real-time PCR, Western blot and immunohistochemistry. Transwell assay and Western blot was used to detect the invasiveness, the expression of integrin β3 and the activation of PI3K/Akt pathway of HCC cells pretreated with IL-8 knockdown or exogenous IL-8.ResultsIL-8, integrin αv and integrin β3 were overexpressed in highly metastatic HCC cell lines compared with low metastatic cell lines. There was a positive correlation between integrin β3 and IL-8 expression in HCC tissues. IL-8 siRNA transfection reduced HCC cell invasion and the levels of integrin β3, p-PI3K and p-Akt. IL-8 induced HCC cell invasion and integrin β3 expression was significantly inhibited by transfection with CXCR1 siRNA or CXCR2 siRNA. When we stimulated HCC cells with exogenous IL-8, cell invasion and the levels of integrin β3, p-PI3K, and p-Akt increased, which could be effectively reversed by adding PI3K inhibitor LY294002.ConclusionsOur results suggest that IL-8 promotes integrin β3 upregulation and the invasion of HCC cells through activation of the PI3K/Akt pathway. The IL-8/CXCR1/CXCR2/PI3K/Akt/integrin β3 axis may serve as a potential treatment target for patients with HCC.
Gambogic acid (GA) is considered a potent anti-tumor agent for its multiple effects on cancer cells in vitro and in vivo. Low concentrations of GA (0.3-1.2 µmol/L) can suppress invasion of human breast carcinoma cells without affecting cell viability. To get a whole profile of the inhibition on breast cancers, higher concentrations of GA and spontaneous metastatic animal models were employed. Treatment with GA (3 and 6 µmol/L) induced apoptosis in MDA-MB-231 cells and the accumulation of reactive oxygen species (ROS). Furthermore, GA induced PARP cleavage, activation of caspase-3, caspase-8, and caspase-9, as well as an increased ratio of Bax/Bcl-2. Moreover, the translocation of apoptotic inducing factor (AIF) and the release of cytochrome c (Cyt c) from mitochondria were observed, indicating that GA induced apoptosis through accumulation of ROS and mitochondrial apoptotic pathway. GA also inhibited cell survival via blocking Akt/mTOR signaling. In vivo, GA significantly inhibited the xenograft tumor growth and lung metastases in athymic BALB/c nude mice bearing MDA-MB-231 cells. Collectively, these data provide further support for the multiple effects of GA on human breast cancer cells, as well as for its potential application to inhibit tumor growth and prevent metastasis in human cancers.
Cellular receptor-mediated signaling pathways play critical roles during the initial immune response to Human Cytomegalovirus (HCMV) infection. However, the involvement of type-I transmembrane glycoprotein CD147/EMMPRIN (extracellular matrix metalloproteinase inducer) in the antiviral response to HCMV infection is still unknown. Here, we demonstrated the specific knockdown of CD147 significantly decreased HCMV-induced activation of NF-κB and Interferon-beta (IFN-β), which contribute to the cellular antiviral responses. Next, we confirmed that HCMV-encoded miR-US25-1-5p could target the 3′ UTR (Untranslated Region) of CD147 mRNA, and thus facilitate HCMV lytic propagation at a low multiplicity of infection (MOI). The expression and secretion of Cyclophilin A (sCyPA), as a ligand for CD147 and a proinflammatory cytokine, were up-regulated in response to HCMV stimuli. Finally, we confirmed that CD147 mediated HCMV-triggered antiviral signaling via the sCyPA-CD147-ERK (extracellular regulated protein kinases)/NF-κB axis signaling pathway. These findings reveal an important HCMV mechanism for evading antiviral innate immunity through its encoded microRNA by targeting transmembrane glycoprotein CD147, and a potential cause of HCMV inflammatory disorders due to the secretion of proinflammatory cytokine CyPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.