We have developed a system for probing protein/protein interactions which makes use of the bacterial flagellum to display random peptide libraries on the surface of E. coli. In developing the system the entire coding sequence of E. coli thioredoxin (trxA) was inserted into a dispensable region of the gene for flagellin (fliC), the major structural component of the E. coli flagellum. The resulting fusion protein (FLITRX) was efficiently exported and assembled into partially functional flagella on the bacterial cell surface. A diverse library of random dodecapeptides were displayed in FLITRX on the exterior of E. coli as conformationally constrained insertions into the thioredoxin active-site loop, a location known to be a highly permissive site for the insertion of exogenous peptide sequences into native thioredoxin. To demonstrate that members of this library could be bound and selected via specific protein/protein interactions to a target protein, a method was devised to enable efficient isolation of those bacteria displaying peptides with affinity to immobilized antibodies. We have unambiguously mapped three different antibody epitopes using this method. Peptides selected as FLITRX active-site fusions retain their binding specificity when made as native thioredoxin active-site loop fusions. This will facilitate future structural characterizations and broaden the general utility of the system for exploring other classes of protein-protein interactions.
We have identified and characterized mouse, rat, and human cDNAs that encode a novel secreted protein of 448 amino acids named DANCE (developmental arteries and neural crest epidermal growth factor (EGF)-like). DANCE contains six calcium-binding EGF-like domains, one of which includes an RGD motif. Overexpression studies of recombinant DANCE protein document that DANCE is a secreted 66-kDa protein. DANCE and recently described protein S1-5 comprise a new EGF-like protein family. The human DANCE gene was mapped at chromosome 14q32.1. DANCE mRNA is mainly expressed in heart, ovary, and colon in adult human tissues. Expression profile analysis by in situ hybridization revealed prominent DANCE expression in developing arteries. DANCE is also expressed in neural crest cell derivatives, endocardial cushion tissue, and several other mesenchymal tissues. In adult vessels, DANCE expression is largely diminished but is reinduced in balloon-injured vessels and atherosclerotic lesions, notably in intimal vascular smooth muscle cells and endothelial cells that lose their ability to proliferate in late stage of injury. DANCE protein was shown to promote adhesion of endothelial cells through interaction of integrins and the RGD motif of DANCE. DANCE is thus a novel vascular ligand for integrin receptors and may play a role in vascular development and remodeling.
2D transition metal dichalcogenides are promising candidates for high‐performance photodetectors. However, the relatively low response speed as well as the complex transfer process hinders their wide applications. Herein, for the first time, the fabrication of a few‐layer MoTe2/Si 2D–3D vertical heterojunction for high‐speed and broadband photodiodes by a pulsed laser deposition technique is reported. Owing to the high junction quality, ultrathin MoTe2 film thickness, and unique vertical n–n heterojunction structure, the photodiode exhibits excellent device performance in terms of a high responsivity of 0.19 A W−1 and a large detectivity of 6.8 × 1013 Jones. The device is also capable of detecting a broadband light with wavelength spanning from 300 to 1800 nm. More importantly, the device possesses an ultrahigh response speed up to 150 ns with a 3‐dB electrical bandwidth approaching 0.12 GHz. This work paves the way toward the fabrication of novel 2D–3D heterojunctions for high‐performance, ultrafast photodetectors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.