Traffic analysis is a compound of strategies intended to find relationships, patterns, anomalies, and misconfigurations, among others things, in Internet traffic. In particular, traffic classification is a subgroup of strategies in this field that aims at identifying the application's name or type of Internet traffic. Nowadays, traffic classification has become a challenging task due to the rise of new technologies, such as traffic encryption and encapsulation, which decrease the performance of classical traffic classification strategies. Machine Learning gains interest as a new direction in this field, showing signs of future success, such as knowledge extraction from encrypted traffic, and more accurate Quality of Service management. Machine Learning is fast becoming a key tool to build traffic classification solutions in real network traffic scenarios; in this sense, the purpose of this investigation is to explore the elements that allow this technique to work in the traffic classification field. Therefore, a systematic review is introduced based on the steps to achieve traffic classification by using Machine Learning techniques. The main aim is to understand and to identify the procedures followed by the existing works to achieve their goals. As a result, this survey paper finds a set of trends derived from the analysis performed on this domain; in this manner, the authors expect to outline future directions for Machine Learning based traffic classification.
Signals captured in rotating machines to obtain the status of their components can be considered as a source of massive information. In current methods based on artificial intelligence to fault severity assessment, features are first generated by advanced signal processing techniques. Then feature selection takes place, often requiring human expertise. This approach, besides time-consuming, is highly dependent on the machinery configuration as in general the results obtained for a mechanical system cannot be reused by other systems. Moreover, the information about time events is often lost along the process, preventing the discovery of faulty state patterns in machines operating under time-varying conditions. In this paper a novel method for automatic feature extraction and estimation of fault severity is proposed to overcome the drawbacks of classical techniques. The proposed method employs a Deep Convolutional Neural Network pre-trained by a Stacked Convolutional Autoencoder. The robustness and accuracy of this new method are validated using a dataset with different severity conditions on failure mode in a helical gearbox, working in both constant and variable speed of operation. The results show that the proposed unsupervised feature extraction method is effective for the estimation of fault severity in helical gearbox, and it has a consistently better performance in comparison with other reported feature extraction methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.