BackgroundMany cancers show aberrant silencing of gene expression and overexpression of histone methyltransferases. The histone methyltransferases (HKMT) EZH2 and EHMT2 maintain the repressive chromatin histone methylation marks H3K27me and H3K9me, respectively, which are associated with transcriptional silencing. Although selective HKMT inhibitors reduce levels of individual repressive marks, removal of H3K27me3 by specific EZH2 inhibitors, for instance, may not be sufficient for inducing the expression of genes with multiple repressive marks.ResultsWe report that gene expression and inhibition of triple negative breast cancer cell growth (MDA-MB-231) are markedly increased when targeting both EZH2 and EHMT2, either by siRNA knockdown or pharmacological inhibition, rather than either enzyme independently. Indeed, expression of certain genes is only induced upon dual inhibition. We sought to identify compounds which showed evidence of dual EZH2 and EHMT2 inhibition. Using a cell-based assay, based on the substrate competitive EHMT2 inhibitor BIX01294, we have identified proof-of-concept compounds that induce re-expression of a subset of genes consistent with dual HKMT inhibition. Chromatin immunoprecipitation verified a decrease in silencing marks and an increase in permissive marks at the promoter and transcription start site of re-expressed genes, while Western analysis showed reduction in global levels of H3K27me3 and H3K9me3. The compounds inhibit growth in a panel of breast cancer and lymphoma cell lines with low to sub-micromolar IC50s. Biochemically, the compounds are substrate competitive inhibitors against both EZH2 and EHMT1/2.ConclusionsWe have demonstrated that dual inhibition of EZH2 and EHMT2 is more effective at eliciting biological responses of gene transcription and cancer cell growth inhibition compared to inhibition of single HKMTs, and we report the first dual EZH2-EHMT1/2 substrate competitive inhibitors that are functional in cells.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-015-0118-9) contains supplementary material, which is available to authorized users.
Histone lysine methyltransferases (HKMTs) are an important class of targets for epigenetic therapy. 1 (chaetocin), an epidithiodiketopiperazine (ETP) natural product, has been reported to be a specific inhibitor of the SU(VAR)3-9 class of HKMTs. We have studied the inhibition of the HKMT G9a by 1 and functionally related analogues. Our results reveal that only the structurally unique ETP core is required for inhibition, and such inhibition is time-dependent and irreversible (in the absence of DTT), ultimately resulting in protein denaturation. Mass spectrometric data provide a molecular basis for this effect, demonstrating covalent adduct formation between 1 and the protein. This provides a potential rationale for the selectivity observed in the inhibition of a variety of HKMTs by 1 in vitro and has implications for the activity of ETPs against these important epigenetic targets.
Isolation and semisynthetic modification of the fungal metabolite chaetocin gave access to a desulfurized analogue of this natural product. Detailed chiroptical studies, comparing experimentally obtained optical rotation values, electronic circular dichroism spectra, and vibrational circular dichroism spectra to computationally simulated ones, reveal the desulfurization of chaetocin to unambiguously proceed with retention of configuration. Consideration of the plausible mechanisms for this process highlighted inconsistencies in the stereochemical assignment of related molecules in the literature. This in turn allowed the stereochemical reassignment of the natural product analogue dethiodehydrogliotoxin.
Epigenetic processes are complex regulatory transcriptional pathways that underpin fundamental physiology and are implicated in the aetiology of many diseases. Small molecule modulators of key epigenetic targets will be central in the study of these intricate networks as well as providing highly useful start points for drug discovery efforts. In this review we will give our perspective on the current status of natural product epigenetic modulators, highlighting the limitations, challenges and opportunities for currently identified molecules, as well as potential strategies for novel compound discovery moving forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.