An experiment in >1000 river and riparian sites found spatial patterns and controls of carbon processing at the global scale.
Cotton-strip bioassays are increasingly used to assess ecosystem integrity because they provide a standardized measure of organic-matter decompositiona fundamental ecoysystem process. However, several different cotton-strip assays are routinely used, complicating the interpretation of results across studies, and hindering broader synthesis. Here, we compare the decay rates and assemblages of bacteria and fungi colonizing the three most commonly used cotton materials: Artist's canvas, Calico cloth, and Empa fabric. Cotton strips from each material type were incubated in 10 streams that span a wide range of physicochemical properties across five ecoregions. Additionally, to evaluate responses to environmental stress without potentially confounding biogeographical effects, we deployed identical bioassays in five streams across an acidification gradient within a single ecoregion. Across all streams decomposition rates (as tensile strength loss [TSL]) differed among the three cotton materials; Calico cloth decomposed fastest (time to 50% TSL [T 50 ] = 16.7 d), followed by the Empa fabric (T 50 = 18.3 d) and then Artist's canvas (T 50 = 21.4 d). Despite these differences, rates of TSL of the three cotton materials responded consistently to variation in environmental conditions; TSL of each fabric increased with stream temperature, dissolved-nutrient concentrations and acid-neutralizing capacity, although Artist's canvas and Calico cloth were more sensitive than Empa fabric. Microbial communities were similar among the materials, and values of community structure (e.g., phylotype richness and diversity) were comparable to those reported for decaying leaves in streams from the same region, the major natural basal carbon resource in forested-stream ecosystems. We present linear calibrations among pairs of assays so that past and future studies can be expressed in a "common currency" (e.g., Artist's-fabric equivalents) to facilitate comparisons of decomposition rates among the fabric types in past and future studies. Lastly, given its relatively low within-site variability, and the large number of streams where it has been used (>600 across the globe), we recommend Artist's fabric for future work. These results show that cotton provides an effective and realistic standardized substrate for studying heterotrophic microbial assemblages, and acts as a reasonable proxy for more chemically complex forms of detritus. These findings add to growing evidence that cotton-strip bioassays are simple, effective and easily standardized indicators of heterotrophic microbial activity and the ecosystem processes that result.
International audiencePhysical habitat degradation is prevalent in river ecosystems. Although still little is known about the ecological consequences of altered hydromorphology, understanding the factors at play can contribute to sustainable environmental management. In this study we aimed to identify the hydromorphological features controlling a key ecosystem function and the spatial scales where such linkages operate. As hydromorphological and chemical pressures often occur in parallel, we examined the relative importance of hydromorphological and chemical factors as determinants of leaf breakdown. Leaf breakdown assays were investigated at 82 sites of rivers throughout the French territory. Leaf breakdown data were then crossed with data on water quality and with a multi-scale hydro- morphological assessment (i.e. upstream catchment, river segment, reach and habitat) when quantitative data were available. Microbial and total leaf breakdown rates exhibited differential responses to both hydromorphological and chemical alterations. Relationships between the chemical quality of the water and leaf breakdown were weak, while hydromorphological integrity explained independently up to 84.2% of leaf breakdown. Hydrological and morphological parameters were the main predictors of microbial leaf breakdown, whereas hydrological parameters had a major effect on total leaf breakdown, particularly at large scales, while morphological parameters were important at smaller scales. Microbial leaf breakdown were best predicted by hydromorphological features defined at the upstream catchment level whereas total leaf breakdown were best predicted by reach and habitat level geomorphic variables. This study demonstrates the use of leaf breakdown in a biomonitoring context and the importance of hydromorphological integrity for the functioning of running water. It provides new insights for envi- ronmental decision-makers to identify the management and restoration actions that have to be un- dertaken including the hydromorphogical features that should be kept in minimal maintenance to support leaf breakdown
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.