IntroductionSleep deprivation has deleterious effects on cardiovascular health. Using wearable health trackers, non-invasive physiological signals, such as heart rate variability (HRV), photoplethysmography (PPG), and baroreflex sensitivity (BRS) can be analyzed for detection of the effects of partial sleep deprivation on cardiovascular responses.MethodsFifteen participants underwent 1 week of baseline recording (BSL, usual day activity and sleep) followed by 3 days with 3 h of sleep per night (SDP), followed by 1 week of recovery with sleep ad lib (RCV). HRV was recorded using an orthostatic test every morning [root mean square of the successive differences (RMSSD), power in the low-frequency (LF) and high-frequency (HF) bands, and normalized power nLF and nHF were computed]; PPG and polysomnography (PSG) were recorded overnight. Continuous blood pressure and psychomotor vigilance task were also recorded. A questionnaire of subjective fatigue, sleepiness, and mood states was filled regularly.ResultsRMSSD and HF decreased while nLF increased during SDP, indicating a decrease in parasympathetic activity and a potential increase in sympathetic activity. PPG parameters indicated a decrease in amplitude and duration of the waveforms of the systolic and diastolic periods, which is compatible with increases in sympathetic activity and vascular tone. PSG showed a rebound of sleep duration, efficiency, and deep sleep in RCV compared to BSL. BRS remained unchanged while vigilance decreased during SDP. Questionnaires showed an increased subjective fatigue and sleepiness during SDP.ConclusionHRV and PPG are two markers easily measured with wearable devices and modified by partial sleep deprivation, contradictory to BRS. Both markers showed a decrease in parasympathetic activity, known as detrimental to cardiovascular health.
Abstract. The validation of long-term cloud data sets retrieved from satellites is challenging due to their worldwide coverage going back as far as the 1980s. A trustworthy reference cannot be found easily at every location and every time. Mountainous regions present a particular problem since ground-based measurements are sparse. Moreover, as retrievals from passive satellite radiometers are difficult in winter due to the presence of snow on the ground, it is particularly important to develop new ways to evaluate and to correct satellite data sets over elevated areas. In winter for ground levels above 1000 m (a.s.l.) in Switzerland, the cloud occurrence of the newly released cloud property data sets of the ESA Climate Change Initiative Cloud_cci Project (Advanced Very High Resolution Radiometer afternoon series (AVHRR-PM) and Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua series) is 132 to 217 % that of surface synoptic (SYNOP) observations, corresponding to a rate of false cloud detections between 24 and 54 %. Furthermore, the overestimations increase with the altitude of the sites and are associated with particular retrieved cloud properties. In this study, a novel post-processing approach is proposed to reduce the amount of false cloud detections in the satellite data sets. A combination of ground-based downwelling longwave and shortwave radiation and temperature measurements is used to provide independent validation of the cloud cover over 41 locations in Switzerland. An agreement of 85 % is obtained when the cloud cover is compared to surface synoptic observations (90 % within ± 1 okta difference). The validation data are then co-located with the satellite observations, and a decision tree model is trained to automatically detect the overestimations in the satellite cloud masks. Cross-validated results show that 62±13 % of these overestimations can be identified by the model, reducing the systematic error in the satellite data sets from 14.4±15.5 % to 4.3±2.8 %. The amount of errors is lower, and, importantly, their distribution is more homogeneous as well. These corrections happen at the cost of a global increase of 7±2 % of missed clouds. Using this model, it is possible to significantly improve the cloud detection reliability in elevated areas in the Cloud_cci AVHRR-PM and MODIS-Aqua products.
Abstract. The validation of long term cloud datasets retrieved from satellites is challenging due to their worldwide coverage going back as far as the 1980s, among others. A trustworthy reference cannot be found easily at every location and every time.Mountainous regions represent especially a problem since ground-based measurements are sparser. Moreover, as retrievals from passive satellite radiometers are difficult in winter due to the presence of snow on the ground, it is particularly important to develop new ways to evaluate and to correct satellite datasets over elevated areas. 5In winter for ground levels above 1000m (a.s.l.) in Switzerland, the cloud occurrence of the newly-released cloud property datasets of the ESA Climate Change Initiative Cloud_cci project (AVHRR-PM and MODIS-Aqua series) is 132 % to 217 % that of SYNOP observations, corresponding to between 24 % and 54 % of false cloud detections. Furthermore, the overestimations increase with the altitude of the sites and are associated with particular retrieved cloud properties.In this study, a novel post-processing approach is proposed to reduce the amount of false cloud detections in the satellite 10 datasets. A combination of ground-based downwelling longwave and shortwave radiation and temperature measurements is used to obtain a mask for the cloud cover above 41 locations in Switzerland. An agreement of 85 % is obtained when the cloud cover is compared to surface synoptic observations (90 % within ± 1 okta difference). The obtained cloud mask has been co-located with the satellite observations and a decision tree is trained to automatically detect the overestimations in the satellite's cloud masks. Cross-validated results show that 62 ± 13 % of these overestimations can be identified by the model, 15reducing the systematic error in the satellite datasets to 4.3 ± 2.8 %, at the cost of an increase of 7 ± 2 % of missed clouds.Using this model, it is hence possible to significantly improve the cloud detection reliability in elevated areas in the Cloud_cci's AVHRR-PM and MODIS-Aqua products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.