Abstract. The water budget equation describes the exchange of water between the land, ocean, and atmosphere. Being able to adequately close the water budget gives confidence in our ability to model and/or observe the spatio-temporal variations in the water cycle and its components. Due to advances in observation techniques, satellite sensors, and modelling, a number of data products are available that represent the components of water budget in both space and time. Despite these advances, closure of the water budget at the global scale has been elusive. In this study, we attempt to close the global water budget using precipitation, evapotranspiration, and runoff data at the catchment scale. The large number of recent state-of-the-art datasets provides a new evaluation of well-used datasets. These estimates are compared to terrestrial water storage (TWS) changes as measured by the Gravity Recovery And Climate Experiment (GRACE) satellite mission. We investigated 189 river basins covering more than 90 % of the continental land area. TWS changes derived from the water balance equation were compared against GRACE data using two metrics: the Nash–Sutcliffe efficiency (NSE) and the cyclostationary NSE. These metrics were used to assess the performance of more than 1600 combinations of the various datasets considered. We found a positive NSE and cyclostationary NSE in 99 % and 62 % of the basins examined respectively. This means that TWS changes reconstructed from the water balance equation were more accurate than the long-term (NSE) and monthly (cyclostationary NSE) mean of GRACE time series in the corresponding basins. By analysing different combinations of the datasets that make up the water balance, we identified data products that performed well in certain regions based on, for example, climatic zone. We identified that some of the good results were obtained due to the cancellation of errors in poor estimates of water budget components. Therefore, we used coefficients of variation to determine the relative quality of a data product, which helped us to identify bad combinations giving us good results. In general, water budget components from ERA5-Land and the Catchment Land Surface Model (CLSM) performed better than other products for most climatic zones. Conversely, the latest version of CLSM, v2.2, performed poorly for evapotranspiration in snow-dominated catchments compared, for example, with its predecessor and other datasets available. Thus, the nature of the catchment dynamics and balance between components affects the optimum combination of datasets. For regional studies, the combination of datasets that provides the most realistic TWS for a basin will depend on its climatic conditions and factors that cannot be determined a priori. We believe that the results of this study provide a road map for studying the water budget at catchment scale.
Suicide is one of the leading causes of death in young adults in many Western countries. We examined the short-term association of temperature with cause-specific mortality, comparing suicide with other causes of death and describing possible attenuation of associations with temperature across decades. We considered all deaths that occurred in France between 1968 and 2016. For each cause of death, we conducted a two-stage meta-analysis of associations with daily temperature. We stratified the association across time-periods. 502,017 deaths by suicide were recorded over 49 years. Temperature was monotonously associated with suicide mortality. The strongest association was found at lag 0 day. The relative risk of suicide mortality at the 99th (compared to the first) temperature percentile was 1.54 (95% confidence interval: 1.46, 1.63). Among all causes of death, suicide was the only one displaying a monotonous trend with temperature and ranked seventh for heat-related mortality; two other causes of death implying the nervous system ranked third and fourth. Associations with temperature attenuated between the 1968-1984 and 1985-2000 periods for all-cause mortality and suicide mortality, without clear further attenuation in the 2001-2016 period. The robust short-term monotonous association between temperature and suicide risk could be considered in heat effects- and suicide-related prevention campaigns.
<p>Despite the accuracy of GRACE terrestrial water storage estimates and the variety of global hydrological datasets providing precipitations, evapotranspiration, and runoff data, it remains challenging to find datasets satisfying the water budget equation at the global scale.</p><p>We select commonly used and widely-assessed datasets. We use several precipitations (CPC, CRU, GPCC, GPCP, GPM, MSWEP, TRMM, ERA5 Land, MERRA2), evapotranspiration (land surface models CLSM, Noah, VIC from GLDAS 2.0, 2.1, and 2.2; GLEAM, MOD16, SSEBop, ERA5 Land, MERRA2), and runoff (land surface models CLSM, Noah, VIC from GLDAS 2.0, 2.1, and 2.2; GRUN, ERA5 Land, MERRA2) datasets to assess the water storage change over more than 150 hydrological basins. Both mascons and spherical harmonics coefficients are used as the reference terrestrial water storage from different centres processing GRACE data. The analysis covers a wide range of climate zones over the globe and is conducted over 2003-2014.</p><p>The water budget closure is evaluated with Root Mean Square Deviation (RMSD), Nash-Sutcliffe Efficiency (NSE), and seasonal decomposition. Each dataset is assessed individually across all basins and dataset combinations are also ranked according to their performances. We obtain a total of 1080 combinations, among which several are suitable to close the water budget. Although none of the combinations performs consistently well over all basins, GPCP precipitations provide generally good results, together with GPCC and GPM. A better water budget closure is generally obtained when using evapotranspiration from Catchment Land Surface Models (GLDAS CLSM), while reanalyses ERA5 Land and MERRA2 are especially suitable in cold regions. Concerning runoff, the machine learning GRUN dataset performs remarkably well across climate zones, followed by ERA5 Land and MERRA2 in cold regions. We also highlight highly unrealistic values in evapotranspiration computed with version 2.2 of GLDAS (using data assimilation from GRACE) in most of the cold basins. Our results are robust as changing the GRACE product from one centre to the other does not affect our conclusions.</p>
The 2019 Le Teil earthquake is an illustrative example of a moderate (MW 4.9) yet damaging event, occurring at shallow depth (≈1 km) in a region with little to no geophysical data available. Therefore, using a high-fidelity wave propagation code, we performed numerical simulations of the Le Teil earthquake in a highly uncertain framework, investigating several seismic sources and geological set-ups. With respect to the former aspect, a point-source model and an extended kinematic fault model were compared. The latter aspect was investigated by comparing a 1D-layered to a 3D geological model. Those models were enhanced with random fluctuations, in order to obtain three alternative non-stationary random geological fields. The synthetic waveforms obtained from regional geophysical models were globally coherent with the recorded ones. The extended fault source model seemed more realistic than the point-source model. In addition, some geological random fields improved the synthetics’ agreement with the recordings. However, the three random field samplings led to a high variability in induced ground motion responses. Given the computational burden of high-fidelity simulations, we used two dimensionality reduction methods, namely the Principal Component Analysis (PCA) and a deep neural network (3D UNet), to investigate this variability. The methods were applied to a database of 40,000 3D geological random fields. Both the PCA and the 3D UNet condensed the variability of the 3D geological fields into a few components. These were sufficient to reconstruct the original fields with great accuracy. More importantly, the seismic response arising from the propagation throughout the reconstructed fields was in excellent agreement with the response of the original geological fields in more than 75% of the dataset. By building a structured ensemble of complex geological fields from their reduced representation, it may become possible to find a relationship between the reduced representation and the generated ground motion. Thus, our study proves the interest of dimensionality reduction to perform uncertainty analyses in complex geological media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.