A high-glucose diet (HGD) is associated with the development of metabolic diseases that decrease life expectancy, including obesity and type-2 diabetes (T2D); however, the mechanism through which a HGD does so is still unclear. Autophagy, an evolutionarily conserved mechanism, has been shown to promote both cell and organismal survival. The goal of this study was to determine whether exposure of Caenorhabditis elegans to a HGD affects autophagy and thus contributes to the observed lifespan reduction under a HGD. Unexpectedly, nematodes exposed to a HGD showed increased autophagic flux via an HLH-30/TFEB-dependent mechanism because animals with loss of HLH-30/TFEB, even those with high glucose exposure, had an extended lifespan, suggesting that HLH-30/TFEB might have detrimental effects on longevity through autophagy under this stress condition. Interestingly, pharmacological treatment with okadaic acid, an inhibitor of the PP2A and PP1 protein phosphatases, blocked HLH-30 nuclear translocation, but not TAX-6/calcineurin suppression by RNAi, during glucose exposure. Together, our data support the suggested dual role of HLH-30/TFEB and autophagy, which, depending on the cellular context, may promote either organismal survival or death.
Chronic exposure to elevated glucose levels leads to fatty acid accumulation, which promotes the development of metabolic diseases such as obesity and type 2 diabetes. MXL-3 is a conserved transcriptional factor that modulates the inhibition of lipolysis in Caenorhabditis elegans. However, the role of MXL-3 in lipid metabolism during nutrient excess remains unknown. We hypothesized that inhibition of MXL-3 prevents glucose-dependent fat accumulation. Nematodes from wild-type N2, MXL-3::GFP and sbp-1 or mxl-3 null strains were grown on standard, high glucose or high glucose plus metformin plates for 24 h. Using laser-scanning confocal microscopy, we monitored the glucose-induced activation of MXL-3 labeled with GFP (MXL-3::GFP). Lipid levels were determined by Oil Red O (ORO) staining and gas chromatography/mass spectrometry, and gene expression was assessed by qRT-PCR. We found that high glucose activated MXL-3 by increasing its rate of nuclear entry, which in turn increased lipid levels via sterol regulatory element-binding protein (SBP-1). This activated critical genes that synthesize long chain unsaturated fatty acids (MUFAs and PUFAs) and repress lipolytic genes. Interestingly, the anti-diabetic drug metformin inhibited MXL-3 activation and subsequently prevented glucose-dependent fat accumulation. These findings highlight the importance of the MXL-3/SBP-1 axis in the regulation of lipid metabolism during nutritional excess and provide new insight into the mechanism by which metformin prevents lipid accumulation. This study also suggests that inhibition of MXL-3 may serve as a potential target for the treatment of chronic metabolic diseases, including obesity, type 2 diabetes, and cardiovascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.