Osteochondrosis (OC) is an injury to cartilage canals with a following necrosis in the growth cartilage, from there it can develop to osteochondrosis dissecans (OCD). Due to its high impact in the equine industry, new insights into predisposing factors and potential high-risk genetic variants are warranted. This article reviews advancements in quantitative and molecular genetics in refining estimation of genetic parameters and identifying predisposing genetic loci. Heritabilities were highest for hock OC with estimates at 0.29-0.46 in Hanoverian warmblood and Norwegian trotters, whereas in Thoroughbreds only very low genetic variation seemed to be present in hock OC lesions. Whole genome scans using the Illumina Equine SNP50 or SNP70 Beadchip were performed in Thoroughbred, Standardbred, French and Norwegian trotter, Hanoverian and Dutch warmblood. Validation studies in Spanish Purebred and Hanoverian warmblood horses corroborated OC risk loci on ECA 3, 14, 27 and 29. Particularly, a strong association with hock-OCD was found for a single nucleotide polymorphism (SNP) on horse chromosome (ECA) 3 upstream to the LCORL gene. Gene expression and microRNA analyses may be helpful to understand pathophysiological processes in equine OC and to connect OCD-associated genomic regions with potential candidate genes. Furthermore progress in elucidating the underlying genetic variants and pathophysiological changes in OC may be expected from whole genome DNA and RNA next-generation sequencing studies.
Curly coat represents an extraordinary type of coat in horses, particularly seen in American Bashkir Curly Horses and Missouri Foxtrotters. In some horses with curly coat, a hypotrichosis of variable extent was observed, making the phenotype appear more complex. In our study, we aimed at investigating the genetic background of curly coat with and without hypotrichosis using high density bead chip genotype and next generation sequencing data. Genome-wide association analysis detected significant signals (p = 1.412 × 10−05–1.102 × 10−08) on horse chromosome 11 at 22–35 Mb. In this significantly associated region, six missense variants were filtered out from whole-genome sequencing data of three curly coated horses of which two variants within KRT25 and SP6 could explain all hair phenotypes. Horses heterozygous or homozygous only for KRT25 variant showed curly coat and hypotrichosis, whereas horses with SP6 variant only, exhibited curly coat without hypotrichosis. Horses with mutant alleles in both variants developed curly hair and hypotrichosis. Thus, mutant KRT25 allele is masking SP6 allele effect, indicative for epistasis of KRT25 variant over SP6 variant. In summary, genetic variants in two different genes, KRT25 and SP6, are responsible for curly hair. All horses with KRT25 variant are additionally hypotrichotic due to the KRT25 epistatic effect on SP6.
BackgroundMiniature size in horses represents an extreme reduction of withers height that originated after domestication. In some breeds, it is a highly desired trait representing a breed- or subtype-specific feature. The genomic changes that emerged due to strong-targeted selection towards this distinct type remain unclear.ResultsComparisons of whole-genome sequencing data from two Miniature Shetland ponies and one standard-sized Shetland pony, performed to elucidate genetic determinants for miniature size, revealed four synergistic variants, limiting withers height to 34.25 in. (87 cm). Runs of homozygosity regions were detected spanning these four variants in both the Miniature Shetland ponies and the standard-sized Shetland pony. They were shown to be characteristic of the Shetland pony breed, resulting in a miniature type under specific genotypic combinations. These four genetic variants explained 72% of the size variation among Shetland ponies and related breeds. The length of the homozygous regions indicate that they arose over 1000 years ago. In addition, a copy number variant was identified in DIAPH3 harboring a loss exclusively in ponies and donkeys and thus representing a potential height-associated variant.ConclusionThis study reveals main drivers for miniature size in horses identified in whole genome data and thus provides relevant candidate genes for extremely short stature in mammals.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-4877-5) contains supplementary material, which is available to authorized users.
The inland floodwater mosquito Aedes vexans (Meigen, 1830) is a competent vector of numerous arthropod-borne viruses such as Rift Valley fever virus (Phenuiviridae) and Zika virus (Flaviviridae). Aedes vexans spp. have widespread Afrotropical distribution and are common European cosmopolitan mosquitoes. We examined the virome of Ae. vexans arabiensis samples from Barkédji village, Senegal, with small RNA sequencing, bioinformatic analysis, and RT-PCR screening. We identified a novel 9494 nt iflavirus (Picornaviridae) designated here as Aedes vexans iflavirus (AvIFV). Annotation of the AvIFV genome reveals a 2782 amino acid polyprotein with iflavirus protein domain architecture and typical iflavirus 5’ internal ribosomal entry site and 3’ poly-A tail. Aedes vexans iflavirus is most closely related to a partial virus sequence from Venturia canescens (a parasitoid wasp) with 56.77% pairwise amino acid identity. Analysis of AvIFV-derived small RNAs suggests that AvIFV is targeted by the exogenous RNA interference pathway but not the PIWI-interacting RNA response, as ~60% of AvIFV reads corresponded to 21 nt Dicer-2 virus-derived small RNAs and the 24–29 nt AvIFV read population did not exhibit a “ping-pong” signature. The RT-PCR screens of archival and current (circa 2011–2020) Ae. vexans arabiensis laboratory samples and wild-caught mosquitoes from Barkédji suggest that AvIFV is ubiquitous in these mosquitoes. Further, we screened wild-caught European Ae. vexans samples from Germany, the United Kingdom, Italy, and Sweden, all of which tested negative for AvIFV RNA. This report provides insight into the diversity of commensal Aedes viruses and the host RNAi response towards iflaviruses.
Rift Valley fever phlebovirus (RVFV, Phenuiviridae) is an emerging arbovirus that can cause potentially fatal disease in many host species including ruminants and humans. Thus, tools to detect this pathogen within tissue samples from routine diagnostic investigations or for research purposes are of major interest. This study compares the immunohistological usefulness of several mono- and polyclonal antibodies against RVFV epitopes in tissue samples derived from natural hosts of epidemiologic importance (sheep), potentially virus transmitting insect species (Culex quinquefasciatus, Aedes aegypti) as well as scientific infection models (mouse, Drosophila melanogaster, C6/36 cell pellet). While the nucleoprotein was the epitope most prominently detected in mammal and mosquito tissue samples, fruit fly tissues showed expression of glycoproteins only. Antibodies against non-structural proteins exhibited single cell reactions in salivary glands of mosquitoes and the C6/36 cell pellet. However, as single antibodies exhibited a cross reactivity of varying degree in non-infected specimens, a careful interpretation of positive reactions and consideration of adequate controls remains of critical importance. The results suggest that primary antibodies directed against viral nucleoproteins and glycoproteins can facilitate RVFV detection in mammals and insects, respectively, and therefore will allow RVFV detection for diagnostic and research purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.