Dedicated control of oxygen vacancies is an important route to functionalizing complex oxide films. It is well-known that tensile strain significantly lowers the oxygen vacancy formation energy, whereas compressive strain plays a minor role. Thus, atomic reconstruction by extracting oxygen from a compressive-strained film is challenging. Here we report an unexpected LaCoO2.5 phase with a zigzag-like oxygen vacancy ordering through annealing a compressive-strained LaCoO3 in vacuum. The synergetic tilt and distortion of CoO5 square pyramids with large La and Co shifts are quantified using scanning transmission electron microscopy. The large in-plane expansion of CoO5 square pyramids weaken the crystal field splitting and facilitated the ordered high-spin state of Co2+, which produces an insulating ferromagnetic state with a Curie temperature of ~284 K and a saturation magnetization of ~0.25 μB/Co. These results demonstrate that extracting targeted oxygen from a compressive-strained oxide provides an opportunity for creating unexpected crystal structures and novel functionalities.
Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.