Background:Foxp3+ regulatory T (Treg) cells and M2 macrophages are associated with increased tumour progression. However, the interaction between Treg cells and M2 macrophages remains unclear.Methods:The expression of FoxP3 and CD163 was detected by immunohistochemistry in 65 cases of laryngeal squamous cell carcinoma (LSCC). In vitro, the generation of activated Treg (aTreg) cells and M2 macrophages by interactions with their precursor cells were analysed by flow cytometry and ELISA. In vivo, the antitumour effects were assessed by combined targeting aTreg cells and M2 macrophages, and intratumoural immunocytes were analysed by flow cytometry.Results:In LSCC tissue, accumulation of aTreg cells and M2 macrophages predicted a poor prognosis and were positively associated with each other. In vitro, aTreg cells were induced from CD4+CD25− T cells by cancer cell-activated M2-like macrophages. Consequently, these aTreg cells skewed the differentiation of monocytes towards an M2-like phenotype, thereby forming a positive-feedback loop. Combined targeting aTreg cells and M2 macrophages led to potent antitumour immunity in vivo.Conclusions:The positive-feedback loop between aTreg cells and M2 macrophages is essential to maintain or promote immunosuppression in the tumour microenvironment and may be a potential therapeutic target to inhibit tumour progression.
Stress has been proven to modulate an individual’s immune system through the release of pituitary and adrenal hormones such as the catecholamines, growth hormone, and glucocorticoids. These signal molecules can significantly alter the host immune system and make it susceptible to viral infection. In this study, we investigate whether epigoitrin, a natural alkaloid from Isatis indigotica, provides protection against influenza infection by reducing the host’s susceptibility to influenza virus under stress and its underlying mechanism. To support it, the mouse restraint stress model and the corticosterone-induced stress model were employed. Our results demonstrated that epigoitrin significantly decreased the susceptibility of restraint mice to influenza virus, evidenced by lowered mortality, attenuated inflammation, and decreased viral replications in lungs. Further results revealed that epigoitrin reduced the protein expression of mitofusin-2 (MFN2), which elevated mitochondria antiviral signaling (MAVS) protein expression and subsequently increased the production of IFN-β and interferon inducible transmembrane 3 (IFITM3), thereby helping to fight viral infections. In conclusion, our study indicated that epigoitrin could reduce the susceptibility to influenza virus via mitochondrial antiviral signaling.
FoxP3+ regulatory T (Treg) cells have diverse functions in the suppression of antitumor immunity. We show that FoxP3hiCD45RA−CD4+ Treg cells [activated Treg (aTreg) cells] are the predominant cell population among tumor-infiltrating FoxP3+ T cells, and that high aTreg cell-infiltrating content is associated with reduced survival in patients with head and neck squamous cell carcinoma (HNSCC). In vitro studies have demonstrated that aTreg cells can suppress tumor-associated antigen (TAA) effector T cell immune responses in HNSCC. Moreover, C-C chemokine receptor 4 (CCR4) was specifically expressed by aTreg cells in the peripheral blood of HNSCC patients. Using a RayBiotech human chemokine antibody array, we showed that monocyte chemoattractant protein-1 (MCP-1), an endogenous CCR4-binding ligand, was specifically upregulated in the HNSCC microenvironment compared to the other four CCR4-binding ligands. Blocking MCP-1/CCR4 signaling-induced aTreg cell recruitment using a CCR4 antagonist evoked antitumor immunity in mice, and lead to inhibition of tumor growth and prolonged survival. Therefore, blocking aTreg cell trafficking in tumors using CCR4-binding agents may be an effective immunotherapy for HNSCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.