With the development of mobile communication and network technology, smart network applications are experiencing explosive growth. These applications may consume different types of resources extensively, thus calling for the resource contribution from multiple nodes available in probably different network domains to meet the service quality requirements. Task decomposition is to set the functional components in an application in several groups to form subtasks, which can then be processed in different nodes. This paper focuses on the models and methods that decompose network applications composed of interdependent components into subtasks in different granularity. The proposed model characterizes factors that have important effects on the decomposition, such as dependency level, expected traffic, bandwidth, transmission delay between components, as well as node resources required by the components, and a density peak clustering (DPC) -based decomposition algorithm is proposed to achieve the multi-granularity decomposition. Simulation results validate the effect of the proposed approach on reducing the expected execution delay and balancing the computing resource demands of subtasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.