<p style='text-indent:20px;'>In this paper, we make a thorough inquiry about the Jacobi stability of 5D self-exciting homopolar disc dynamo system on the basis of differential geometric methods namely Kosambi-Cartan-Chern theory. The Jacobi stability of the equilibria under specific parameter values are discussed through the characteristic value of the matrix of second KCC invariants. Periodic orbit is proved to be Jacobi unstable. Then we make use of the deviation vector to analyze the trajectories behaviors in the neighborhood of the equilibria. Instability exponent is applicable for predicting the onset of chaos quantitatively. In addition, we also consider impulsive control problem and suppress hidden attractor effectively in the 5D self-exciting homopolar disc dynamo.</p>
In this paper, the Jacobi stability of a two-degree-of-freedom mechanical system is studied by the innovative application of KCC-theory, namely differential geometric methods. We discuss the Jacobi stability of two equilibria and a periodic orbit by constructing geometric invariants. Both the regions of Jacobi stability and Lyapunov stability are presented to show the difference. We draw the phase portraits of the deviation vector near two equilibria under specific parameter values and initial conditions, and point out the sensitivity of deviation vector to initial conditions. In addition, the corresponding instability exponent and curvature are applicable for predicting the onset of chaos, which help us to detect chaotic behaviors quantitatively.
Our objective is to investigate the innovative dynamics of piecewise smooth systems with multiple discontinuous switching manifolds. This paper establishes the coexistence of heteroclinic cycles in a class of 3D piecewise affine systems with three switching manifolds through rigorous mathematical analysis. By constructing suitable Poincaré maps adjacent to heteroclinic cycles, we demonstrate the occurrence of two distinct types of horseshoes and show the conditions for the presence of chaotic invariant sets. A family of attractors that satisfy the criteria are presented using this technique. It is shown that the outcomes of numerical simulation accurately reflect those of our theoretical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.