Irregularity and coarse spatial sampling of seismic data strongly affect the performances of processing and imaging algorithms. Therefore, interpolation is a usual pre-processing step in most of the processing workflows. In this work, we propose a seismic data interpolation method based on the deep prior paradigm: an ad-hoc Convolutional Neural Network is used as a prior to solve the interpolation inverse problem, avoiding any costly and prone-to-overfitting training stage. In particular, the proposed method leverages a multi resolution U-Net with 3D convolution kernels exploiting correlations in cubes of seismic data, at different scales in all directions. Numerical examples on different corrupted synthetic and field datasets show the effectiveness and promising features of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.