We address the properties of excitons in monolayer MoS2 from a theoretical point of view, showing that low-energy excitonic states occur both at the Brillouin zone center and at the Brillouin-zone corners, that binding energies at the Brillouin-zone center deviate strongly from the (n − 1/2) −2 pattern of the two-dimensional hydrogenic model, and that the valley-degenerate exciton doublet at the Brillouin-zone center splits at finite momentum into an upper mode with non-analytic linear dispersion and a lower mode with quadratic dispersion. Although monolayer MoS2 is a direct-gap semiconductor when classified by its quasiparticle band structure, it may well be an indirect gap material when classified by its excitation spectra.
We present a theory of magnetic exchange interactions in quantum dots containing electrons and magnetic ions. We find the interaction between the electron and Mn ion to depend strongly on the number of electrons. It can be switched off for closed shell configurations and maximized for partially filled shells. However, unlike the total electron spin S which is maximized for half-filled shells, we predict the exchange interaction to be independent of the filling of the electronic shell. We show how this unusual effect manifests itself in quantum dot addition and excitation spectrum.
We present a theory of interaction of magnetic Mn ions depending strongly on the number (Ne) of electrons in a quantum dot. For closed electronic shells, we derive the RKKY interaction and its dependence on magnetic ion positions, quantum dot energy quantization omega0, and the number of filled shells Ns. For partially filled shells, the many-electron magnetopolaron effect leads to effective carrier mediated ferromagnetic Mn-Mn interactions. The dependence of the magnetopolaron energy on magnetic ion positions, quantum dot energy quantization omega0, and the number of electrons Ne is predicted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.