Nickel and nickel compounds are carcinogens that target the lungs and kidneys causing cell death or cell survival adaptation. The multidrug resistance P-glycoprotein ABCB1 protects cells against toxic metabolites and xenobiotics and is upregulated in many cancer cell types. Here, we investigated the role of ABCB1 in nickel-induced stress signaling mediated by reactive oxygen species (ROS) and ceramides. In renal proximal tubule cells, nickel chloride (0.1-0.25 mM) increased both ROS formation, detected by 5-(and-6)-carboxy-2',7'-dichlorodihydrofluorescein diacetate, and cellular ceramides, which were determined by lipid dot blot and surface immunostaining, culminating in decreased cell viability, increased DNA fragmentation, augmented PARP-1 cleavage, and increased ABCB1 mRNA and protein. Inhibitors of the de novo ceramide synthesis pathway (fumonisin B1, L-cycloserine) and an antioxidant (α-tocopherol) attenuated nickel-induced toxicity as well as induction of ABCB1. ABCB1 protects against nickel toxicity as PSC833, an ABCB1 blocker, augmented the decrease in cell viability by nickel. Moreover, nickel toxicity was attenuated in renal MDCK cells stably overexpressing ABCB1. In agreement with previous data that demonstrated extrusion of (glucosyl)ceramides by ABCB1 (Lee et al. in Toxicol Sci 121:343, 2011), PSC833 increased total cellular ceramides by >2-fold after nickel treatment. Further, glucosylceramide synthase (GCS) mRNA is upregulated by nickel at 3 h by ~1.5-fold but declined with prolonged exposures (6-24 h). Inhibition of GCS with C9DGJ or knockdown of GCS with siRNA significantly attenuated nickel toxicity. In conclusion, nickel induces a ROS-ceramide pathway to cause apoptotic cell death as well as activate adaptive survival responses, including upregulation of ABCB1, which improves cell survival by extruding proapoptotic (glucosyl)ceramides.
2.45 GHz electromagnetic radiation appears to induce proliferative effects through oxidative stress and Ca²⁺ influx although blocking of transient receptor potential melastatin 2 channels by 2-aminoethyl diphenylborinate seems to counteract the effects on Ca²⁺ ions influx.
Nickel is an abundant carcinogenic and nephrotoxic metal whose activity leads to renal impairment. Previous studies have shown a protective effect of simultaneous vitamin C administration on acute and chronic nickel toxicity. However, very little research relating to the effect of vitamin C pretreatment in preventing nickel-induced acute nephrotoxicity is available. Therefore, the present study aimed to determine the efficiency of vitamin C (VC) pretreatment in preventing acute renal toxicity of nickel. Mice were pretreated orally with vitamin C (16.6 mg kg -1 body weight, b.w.) for seven consecutive days, prior to intraperitoneal (i.p.) administration of nickel chloride at different doses (3, 5, and 10 mg Ni kg -1 b.w.) for an exposure period of 24 hours. Thereafter, animals were killed and kidney tissue and blood samples were taken for histological examination and biochemical marker analyses. Vitamin C pretreatment alone did not alter the levels of serum kidney markers (creatinine, urea, and uric acid). However, treatment with Ni alone showed a significant increase in the levels of serum creatinine, urea, and uric acid with marked necrotic epithelial cells and infiltration by inflammatory cells in kidney sections as compared to the control group. Pretreatment with vitamin C and treatment with Ni at all doses tested for 24 hours showed a significant decrease in the levels of serum creatinine, urea, and uric acid, as well as an improvement in histological changes compared to those previously seen in the group treated with Ni alone. It is concluded that vitamin C pretreatment effectively improved renal function and tissue damage caused by nickel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.