The current study aims to develop eco-friendly and economical chitosans with a wide range of applications using organic acids for shrimp shells demineralization. Chitosan samples were extracted from shrimp (Parapenaeus longirostris) shells and the demineralization step was performed with three organic acids (citric, acetic, and lactic) and two mineral acids (hydrochloric and sulfuric). The chitosans were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The chitosans’ physicochemical properties were also determined. The characteristic bands and functional groups of the chitosans were identified by FTIR spectra. The chitosans’ crystallinity order was as follows: ChHCl > ChCitric > ChH2SO4 > ChLactic > ChAcetic. The chitosans’ morphological characteristics revealed a smooth surface and fibrous structures with pores. Chitosans extracted by organic acids showed the highest extraction yields. ChHCl and ChCitric had higher degrees of deacetylation values; 83.67% and 81.47%, respectively. The solubility was proportional to the degree of deacetylation. Furthermore, ChH2SO4 and ChCitric had lower molecular weight values; 149 kDa and 183 kDa, respectively. Organic acids are as effective as mineral acids for shrimp shells demineralization. The developed process opens up possibilities to produce chitin and chitosan in a more eco-friendly way and at a lower cost in many industrial sectors.
Developing bioactive food packaging, capable of extending the shelf life of fruits, has received increasing attention in recent years. The present study highlights the interest in post-harvest treatment for strawberries with chitosan as a preservation solution. Chitosan extraction was carried out from shrimp shells (Parapenaeus longirostris), composed of chitin, using citric acid during the demineralization step. Extracted chitosan was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The presence of amino group (-NH2) in the obtained chitosan was confirmed by infrared (IR) spectral data. Deacetylation degree (DD), which has a value of 80.86%, was determined by FTIR spectra. X-ray diffraction pattern (XRD) showed two peaks of crystalline character, characteristic of extracted chitosan, approximately at 20° and 30° (2θ). Extracted chitosan morphology was studied by scanning electron microscopy (SEM) and showed a relatively smooth top surface and fibrous structures. Chitosan, acetic acid, and their interaction effects were evaluated on Aspergillus niger mycelial growth strain isolated from spoiled strawberries. Chitosan revealed a strong anti-fungal activity, dose-dependent (from 0 to 3%), on Aspergillus niger mycelial growth, while acetic acid showed moderate anti-fungal activity against the Aspergillus niger strain. Agri-food application was carried out using chitosan solubilized in acetic acid as a post-harvest treatment tool for the prolongation of shelf life of strawberries (by using an experimental design). Coating, with the developed preservative solution, significantly reduced microbial spoilage in strawberries. Treated strawberries retained their initial pigmentation for a longer period when compared to untreated strawberries. The treatment carried out maintained the cellular structures of treated strawberries during the storage period and thus extended the shelf life of strawberries which is considered very susceptible to reduce post-harvest losses.
The climatic conditions of the growing regions influence the fruit’s microbiological quality and their tolerance to post-harvest pathogens. The present work aims to identify the prevalence of bacterial and fungal strains of strawberries (Fragaria × ananassa) in the Gharb and Loukkos regions of Morocco. Thus, to establish a correlation between the microbial load and the climatic conditions of the two targeted regions. The bacteriological analyses were studied according to the International Organization for Standardization (ISO) methodologies. Regarding the mycological study, fungal species determination was performed using identification keys. Yeast species determination was done using genus analysis, assimilation, and fermentation tests. Emberger bioclimatic quotients (Q2) were calculated for the Gharb and Loukkos regions and bioclimatic stages were determined. Salmonella spp. was not detected in the studied samples. However, Listeria monocytogenes and Escherichia coli were isolated from the Gharb samples. Sulfite-reducing clostridia spores were found in two Gharb samples versus one Loukkos sample. Coagulase-positive staphylococci were negative in all samples analyzed. Loukkos and Gharb regions were contaminated by Bacillus cereus with percentages of occurrence of 5.2 and 7.8%, respectively. The fungi found in strawberries from both regions were Aspergillus niger, Botrytis cinerea, Fusarium spp., Penicillium spp., Rhizopus spp., and Alternaria alternata with a significant predominance in the Loukkos samples. Indeed, a marked presence is noted for Candida sake and Rhodotorula glutinis in strawberries from Loukkos. Gharb is located on the semi-arid stage, while Loukkos is located on the sub-humid stage. Climatic conditions have a strong influence on plant microbial load, which explains the prevalence of bacteria in strawberries from Gharb and the prevalence of fungi in strawberries from Loukkos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.