In this paper we describe the Kottamia Faint Imaging Spectro-Polarimeter (KFISP) that has been recently developed and designed to be mounted at the Cassegrain focus of the 1.88 m telescope at Kottamia Astronomical Observatory (KAO), Egypt. The optical design of KFISP is developed such that it can be used in various modes of operation. These are: direct imaging, spectroscopic, polarimetric imaging, and spectro-polarimetric. The KFISP is an all-refractive design to meet the polarimetric requirements and includes a focal reducer with a corrector section, collimator section, parallel beam section (containing various imaging components), and camera section. The corrector section gives an unvignetted Field-of-View of 8ʹ × 8ʹ and the collimator section has a focal length of 305 mm and matches the focal ratio of the input beam. The parallel beam section is 200 mm long and near the middle of it there is an image of the telescope pupil. The camera section includes 5 elements and has a focal length of 154.51 mm which gives an instrument effective final focal ratio of f/6.14 (acting as a telescope focal reducer of 1:2 ratio). The KFISP contains an internal calibration system which hosts the calibration light injection system, an integrating sphere equipped with the required calibration light sources. The opto-mechanical parts of KFISP contain a double-layered carbon fiber strut structure and comprises its subsystems of slit and guider assemblies, filter wheel drawer, grism wheel drawer, polarimetric components cubical box, and CCD camera which is integrated with camera optics. The CCD camera has 2048
2048 pixels with 13.5-micron square pixel size. The camera is cooled by liquid Nitrogen and is fixed to the KFISP through the integrated camera lens. The KFISP has been fully commissioned, mounted and is being tested in all modes of operation. In this paper we introduce the ambitious scientific goals, the optical setups of KFISP, its opto-mechanical implementation and the performance analysis of the instrument. In addition, we describe the camera system, its performance, and its software control. Finally, we present a sample of the first light observations obtained from the instrument.
Relativistic isothermal gas spheres are a powerful tool to model many astronomical objects, like compact stars and clusters of galaxies. In the present paper, we introduce an artificial neural network (ANN) algorithm and Taylor series to model the relativistic gas spheres using Tolman-Oppenheimer-Volkoff differential equations (TOV). Comparing the analytical solutions with the numerical ones revealed good agreement with maximum relative errors of 10−3. The ANN algorithm implements a three-layer feed-forward neural network built using a back-propagation learning technique that is based on the gradient descent rule. We analyzed the massradius relations and the density profiles of the relativistic isothermal gas spheres against different relativistic parameters and compared the ANN solutions with the analytical ones. The comparison between the two solutions reflects the efficiency of using the ANN to solve TOV equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.