We construct new analytical solutions of the (3+1)-dimensional modified KdV-Zakharov-Kuznetsev equation by the Exp-function method. Plentiful exact traveling wave solutions with arbitrary parameters are effectively obtained by the method. The obtained results show that the Exp-function method is effective and straightforward mathematical tool for searching analytical solutions with arbitrary parameters of higher-dimensional nonlinear partial differential equation.
In this study, a new discrete SI epidemic model is proposed and established from SI fractional-order epidemic model. The existence conditions, the stability of the equilibrium points and the occurrence of bifurcation are analyzed. By using the center manifold theorem and bifurcation theory, it is shown that the model undergoes flip and Neimark-Sacker bifurcation. The effects of step size and fractional-order parameters on the dynamics of the model are studied. The bifurcation analysis is also conducted and our numerical results are in agreement with theoretical results.
In this article, new (G′/G)-expansion method and new generalized (G′/G)-expansion method is proposed to generate more general and abundant new exact traveling wave solutions of nonlinear evolution equations. The novelty and advantages of these methods is exemplified by its implementation to the KdV equation. The results emphasize the power of proposed methods in providing distinct solutions of different physical structures in nonlinear science. Moreover, these methods could be more effectively used to deal with higher dimensional and higher order nonlinear evolution equations which frequently arise in many scientific real time application fields
We construct the traveling wave solutions of the fifth-order Caudrey-Dodd-Gibbon (CDG) equation by the -expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, the trigonometric, and the rational functions. It is shown that the -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.