This paper deals with Iterative Learning Control (ILC) design to solve the trajectory tracking problem for rigid robot manipulators subject to external disturbances, and performing repetitive tasks. A high order ILC scheme is synthetized; this controller contains the information (errors) of several iterations and not only of one iteration. It has been shown that the closed loop system (robot plus controller) is asymptotically stable, over the whole finite time interval, when the iteration number tends to infinity. This proof is based upon the use of a Lyapunov-like positive definite sequence, which is shown to be monotonically decreasing under the proposed controller scheme. Finally, simulation results on two-link manipulator are provided to illustrate the effectiveness of the proposed controller.
SUMMARYThis paper deals with iterative learning control (ILC) design to solve the trajectory tracking problem for rigid robot manipulators subject to external disturbances, and performing repetitive tasks. A D-type ILC is presented with an initial condition algorithm, which gives the initial state value in each iteration automatically. Thus, the resetting condition (the initial state error is equal to zero) is not required. The λ-norm is adopted as the topological measure in our proof of the asymptotic stability of this control scheme, over the whole finite time-interval, when the iteration number tends to infinity. Simulation results are presented to illustrate the effectiveness of the proposed control scheme.
In this paper, an iterative learning radial basis function neural-networks (RBF NN) control algorithm is developed for a class of unknown multi input multi output (MIMO) nonlinear systems with unknown control directions. The proposed control scheme is very simple in the sense that we use just a P-type iterative learning control (ILC) updating law in which an RBF neural network term is added to approximate the unknown nonlinear function, and an adaptive law for the weights of RBF neural network is proposed. We chose the RBF NN because it has universal approximation capabilities and can approximate any continuous function. In addition, among the advantages of our controller scheme is the fact that it is applicable to deal with a class of nonlinear systems without the need to satisfy the global Lipschitz continuity condition and we assume, only, that the unstructured uncertainty is norm-bounded by an unknown function. Another advantage of the proposed controller and unlike other works on ILC, we do not need any prior knowledge of the control directions for MIMO nonlinear system. Thus, the Nussbaum-type function is used to solve the problem of unknown control directions. In order to prove the asymptotic stability of the closed-loop system, a Lyapunov-like positive definite sequence is used, which is shown to be monotonically decreasing under the control design scheme. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed control scheme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.