The humidification-dehumidification (HDH) desalination system can be advantageous in small-scale, off-grid applications. The main drawback of this technology has been its low energy efficiency, which results in high water production costs. Previous studies have approached this issue through thermodynamic balancing of the system; however, most theoretical work on the balancing of HDH has followed a fixed-effectiveness approach that does not explicitly consider transport processes in the components. Fixing the effectiveness of the heat and mass exchangers allows them to be modeled without explicitly sizing the components and gives insight on how the cycle design can be improved. However, linking the findings of fixed-effectiveness models to actual systems can be challenging, as the performance of the components depends mainly on the available surface areas and the flow rates of the air and water streams. In this study, we present a robust numerical solution algorithm for a heat and mass tranfer model of a complete humidification-dehumidification system consisting of a packed-bed humidifier and a multi-tray bubble column dehumidifier. We look at the effect of varying the water-to-air mass flow rate ratio on the energy efficiency of the system, and we compare the results to those reached following a fixed-effectiveness approach. In addition, we study the effect of the top and bottom temperatures on the performance of the system. We recommended the implementation a control system that varies the mass flow rate ratio in order to keep the system balanced in off-design conditions, especially with varying top temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.