In this work, we propose an all-silicon-based super absorber in the mid infrared (MIR) spectral range. The presented structures are composed of n-doped silicon nanoparticles or nanowires embedded in intrinsic silicon. An intense absorption peak is observed and could be tuned across the MIR range. While nanoparticles give a single broad absorption peak, the nanowires structure shows a broadband absorption of more than 70% from λ = 5 to 13 µm reaching up to 99% at 7 µm. The absorption peak could be extended to more than 20 µm by increasing the length of the nanowire. Increasing the diameter of the nanoparticles gives higher absorption, reaching just above 90% efficiency at λ = 11 µm for a diameter of 1500 nm. Changing the geometrical parameters of each structure is thoroughly studied and analyzed to obtain highest absorption in MIR. The proposed structures are CMOS compatible, have small footprints and could be integrated for on-chip applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.