Iris-biometrics are an alternative way of authenticating and identifying a person because biometric identifiers are unique to people. This paper introduces a method aims to efficient human identification by enhanced iris detection method within acceptable time. After preparing various type of images, then perform a series of pre-processing steps and standardize them, after that use Uni-Net learning, so identify the human by Navie-Bays method is the last step based on the output of Uni-Net which is role as feature extractor for the iris part and another sub-net for non-iris part that may involve identification-outcome. The outcome of this method looked good compared to some high-level methods, so, was accuracy-rate 9855, 99.25, and 99.81 for CASIA-v4, ITT-Delhi, and MMU-database respectively. Also, this paper introduces a method of iris recognition using CNN model which is improved the preprocessed patterns that together from dataset applied some procedures to develop them based on techniques of equalization and acclimate contrast ones. After that characteristic extracted and classified using CNN that comprises of 10 layers with back-propagation schema and adjusted moment evaluation Adam-optimizer for modernize weights. The overall accuracy was 95.31% with utilization time 17.58 (mints) for training-model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.