The vast majority of studies regarding the immune basis of MS (and its animal model, EAE) have largely focused on CD4+ T-cells as mediators and regulators of disease. Interestingly, CD8+ T-cells represent the predominant T-cell population in human MS lesions and are oligoclonally expanded at the site of pathology. However, their role in the autoimmune pathologic process has been both understudied and controversial. Several animal models and MS patient studies support a pathogenic role for CNS-specific CD8+ T-cells, whereas we and others have demonstrated a regulatory role for these cells in disease. In this review, we describe studies that have investigated the role of CD8+ T-cells in MS and EAE, presenting evidence for both pathogenic and regulatory functions. In our studies, we have shown that cytotoxic/suppressor CD8+ T-cells are CNS antigen-specific, MHC class I-restricted, IFNγ- and perforin-dependent, and are able to inhibit disease. The clinical relevance for CD8+ T-cell suppressive function is best described by a lack of their function during MS relapse, and importantly, restoration of their suppressive function during quiescence. Furthermore, CD8+ T-cells with immunosuppressive functions can be therapeutically induced in MS patients by glatiramer acetate (GA) treatment. Unlike CNS-specific CD8+ T-cells, these immunosuppressive GA-induced CD8+ T-cells appear to be HLA-E restricted. These studies have provided greater fundamental insight into the role of autoreactive as well as therapeutically induced CD8+ T-cells in disease amelioration. The clinical implications for these findings are immense and we propose that this natural process can be harnessed toward the development of an effective immunotherapeutic strategy.
Obesity is one of the leading risk factors for developing renal cell carcinoma, an immunogenic tumor that is treated clinically with immunostimulatory therapies. Currently, however, the mechanisms linking obesity with renal cancer incidence are unclear. Using a model of diet-induced obesity, we found that obese BALB/c mice with orthotopic renal tumors had increased total frequencies of myeloid-derived suppressor cells (MDSC) in renal tumors and spleens by d14 post-tumor challenge, relative to lean counterparts. Renal tumors from obese mice had elevated concentrations of the known myeloid cell chemoattractant CCL2, which was produced locally by increased percentages of dendritic cells, macrophages, B cells, and CD45- cells in tumors. MDSC expression of the CCL2 receptor, CCR2, was unaltered by obesity but greater percentages of CCR2+ MDSCs were present in renal tumors from obese mice. Of note, the intracellular arginase levels and per-cell suppressive capacities of tumor-infiltrating and splenic MDSCs were unchanged in obese mice relative to lean controls. Thus, our findings suggest that obesity promotes renal tumor progression via development of a robust immunosuppressive environment that is characterized by heightened local and systemic MDSC prevalence. Targeted intervention of the CCL2/CCR2 pathway may facilitate immune-mediated renal tumor clearance in the obese.
The role of CD8+ T cells in the process of autoimmune pathology has been both understudied and controversial. Multiple sclerosis (MS) is an inflammatory, demyelinating disorder of the central nervous system (CNS) with an underlying T-cell-mediated immunopathology. CD8+ T cells are the predominant T cells in human MS lesions, showing oligoclonal expansion at the site of pathology. It is still unclear whether these cells represent pathogenic immune responses or disease-regulating elements. Through studies in human MS and its animal model, experimental autoimmune encephalomyelitis (EAE), we have discovered two novel CD8+ T cell populations that play an essential immunoregulatory role in disease: (1) MHC class Ia-restricted neuroantigen-specific “autoregulatory” CD8+ T cells and (2) glatiramer acetate (GA/Copaxone®) therapy-induced Qa-1/HLA-E-restricted GA-specific CD8+ T cells. These CD8 Tregs suppress proliferation of pathogenic CD4+CD25- T-cells when stimulated by their cognate antigens. Similarly, CD8+ Tregs significantly suppress EAE when transferred either pre-disease induction or during peak disease. The mechanism of disease inhibition depends, at least in part, on an antigen-specific, contact-dependent process and works through modulation of CD4+ T cell responses as well as antigen presenting cells (APC) through a combination of cytotoxicity and cytokine-mediated modulation. This review provides an overview of our understanding of CD8+ T cells in immune-mediated disease, focusing particularly on our findings about regulatory CD8+ T cells both in MS and EAE. Clinical relevance of these novel CD8-regulatory populations is discussed, providing insights into a potentially intriguing, novel therapeutic strategy for these diseases.
CD8 T-cells predominate in CNS lesions of MS patients and display oligoclonal expansion. However, the role of myelin-specific CD8 T-cells in disease remains unclear, with studies showing protective and pathogenic roles in EAE. We demonstrated a disease-suppressive function for CNS-specific CD8 T-cells in a model where the antigen is exogenously administered in vivo and used for in vitro activation. To probe the nature of the CD8 response elicited by endogenously presented myelin antigens in vivo, we developed a novel approach utilizing infection with Listeria monocytogenes (LM) encoding proteolipid protein peptide (PLP) amino acids 178-191 (LM-PLP). LM-PLP infection preferentially induced PLP-specific CD8 T-cell responses. Despite the induction of PLP-specific CD8 T-cells, LM-PLP infection did not result in disease. In fact, LM-PLP infection resulted in significant amelioration of PLP178-191-induced EAE. Disease suppression was not observed in mice deficient in CD8 T-cells, IFN-γ or perforin. DTH responses and CNS infiltration were reduced in protected mice, and their CD4 T-cells had reduced capacity to induce tissue inflammation. Importantly, infection with LM-PLP ameliorated established disease. Our studies indicate that CD8 T-cells induced by endogenous presentation of PLP178-191 attenuate CNS autoimmunity in models of EAE, implicating the potential of this approach as a novel immunotherapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.