Spectral methods are strong tools that can be used for extraction of the data's structure based on eigenvectors of constructed affinity matrices. In this paper, we aim to propose some new measurement functions to evaluate the ability of each eigenvector of affinity matrix in data clustering. In the proposed strategy, each eigenvector's elements are clustered by traditional fuzzy c-means algorithm and then informative eigenvectors selection is performed by optimization of an objective function which defined based on three criterions. These criterions are the compactness of clusters, distance between clusters and stability of clustering to evaluate each eigenvector based on considering the structure of clusters which placed on. Finally, Lagrange multipliers method is used to minimize the proposed objective function and extract the most informative eigenvectors. To indicate the merits of our algorithm, we consider UCI Machine Learning Repository databases, COIL20, YALE-B and PicasaWeb as benchmark data sets. Our simulation's results confirm the superior performance of the proposed strategy in developing spectral clustering compared to conventional clustering methods and recent eigenvector selection based algorithms.
A new robust method of non-blind image watermarking is proposed in this paper. The suggested method is performed by modification on singular value decomposition (SVD) of images in Complex Wavelet Transform (CWT) domain while CWT provides higher capacity than the real wavelet domain. Modification of the appropriate sub-bands leads to a watermarking scheme which favourably preserves the quality. The additional advantage of the proposed technique is its robustness against the most of common attacks. Analysis and experimental results show much improved performance of the proposed method in comparison with the pure SVD-based as well as hybrid methods (e.g. DWT-SVD as the recent best SVD-based scheme).
For a long time different studies have focused on introducing new image enhancement techniques. While these techniques show a good performance and are able to increase the quality of images, little attention has been paid to how and when overenhancement occurs in the image. This
could possibly be linked to the fact that current image quality metrics are not able to accurately evaluate the quality of enhanced images. In this study we introduce the Subjective Enhanced Image Dataset (SEID) in which 15 observers are asked to enhance the quality of 30 reference images
which are shown to them once at a low and another time at a high contrast. Observers were instructed to enhance the quality of the images to the point that any more enhancement will result in a drop in the image quality. Results show that there is an agreement between observers on when over-enhancement
occurs and this point is closely similar no matter if the high contrast or the low contrast image is enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.