Colorectal Cancer (CRC), a leading cause of cancer-related deaths, can be abated by timely polypectomy. Computer-aided classification of polyps helps endoscopists to resect timely without submitting the sample for histology. Deep learning-based algorithms are promoted for computer-aided colorectal polyp classification. However, the existing methods do not accommodate any information on hyperparametric settings essential for model optimisation. Furthermore, unlike the polyp types, i.e., hyperplastic and adenomatous, the third type, serrated adenoma, is difficult to classify due to its hybrid nature. Moreover, automated assessment of polyps is a challenging task due to the similarities in their patterns; therefore, the strength of individual weak learners is combined to form a weighted ensemble model for an accurate classification model by establishing the optimised hyperparameters. In contrast to existing studies on binary classification, multiclass classification require evaluation through advanced measures. This study compared six existing Convolutional Neural Networks in addition to transfer learning and opted for optimum performing architecture only for ensemble models. The performance evaluation on UCI and PICCOLO dataset of the proposed method in terms of accuracy (96.3%, 81.2%), precision (95.5%, 82.4%), recall (97.2%, 81.1%), F1-score (96.3%, 81.3%) and model reliability using Cohen’s Kappa Coefficient (0.94, 0.62) shows the superiority over existing models. The outcomes of experiments by other studies on the same dataset yielded 82.5% accuracy with 72.7% recall by SVM and 85.9% accuracy with 87.6% recall by other deep learning methods. The proposed method demonstrates that a weighted ensemble of optimised networks along with data augmentation significantly boosts the performance of deep learning-based CAD.
With the increasing popularity of the Internet-of-Medical-Things (IoMT) and smart devices, huge volumes of data streams have been generated. This study aims to address the concept drift, which is a major challenge in the processing of voluminous data streams. Concept drift refers to overtime change in data distribution. It may occur in the medical domain, for example the medical sensors measuring for general healthcare or rehabilitation, which may switch their roles for ICU emergency operations when required. Detecting concept drifts becomes trickier when the class distributions in data are skewed, which is often true for medical sensors e-health data. Reactive Drift Detection Method (RDDM) is an efficient method for detecting long concepts. However, RDDM has a high error rate, and it does not handle class imbalance. We propose an Enhanced Reactive Drift Detection Method (ERDDM), which systematically generates strategies to handle concept drift with class imbalance in data streams. We conducted experiments to compare ERDDM with three contemporary techniques in terms of prediction error, drift detection delay, latency, and ability to handle data imbalance. The experimentation was done in Massive Online Analysis (MOA) on 48 synthetic datasets customized to possess the capabilities of data streams. ERDDM can handle abrupt and gradual drifts and performs better than all benchmarks in almost all experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.