Hypervirulent mutants of Mycobacterium tuberculosis, whose growth rates are higher in vivo, have now been reported to have mutations in both regulatory and structural genes, but the basis for this unusual phenotype is not understood. One hypervirulence gene, dosR (devR, Rv2031c), activates transcription of approximately 50 genes in this pathogen in response to hypoxia and nitric oxide stress. The most dramatic activation (ϳ80-fold) is activation of the hspX (acr, Rv2031c) gene, which encodes a 16-kDa ␣-crystallin-like protein that is a major antigen. In this study we found that a ⌬acr mutant exhibited increased growth following infection of BALB/c mice in vivo and in both resting and activated macrophages in vitro (as measured by the number of CFU). The increased growth in macrophages was equal to that of a ⌬dosR mutant, while introduction of a constitutively expressed hspX gene reduced the ⌬dosR virulence to wild-type levels. These results suggest that the increased number of CFU of the ⌬dosR mutant was largely due to loss of hspX expression. We also confirmed that constitutive expression of hspX slows growth in vitro, and we propose that hspX plays an active role in slowing the growth of M. tuberculosis in vivo immediately following infection.
SummaryPathogenic mycobacteria have the ability to persist in phagocytic cells and to suppress the immune system. The glycolipid lipoarabinomannan (LAM), in particular its mannose cap, has been shown to inhibit phagolysosome fusion and to induce immunosuppressive IL-10 production via interaction with the mannose receptor or DC-SIGN. Hence, the current paradigm is that the mannose cap of LAM is a crucial factor in mycobacterial virulence. However, the above studies were performed with purified LAM, never with live bacteria. Here we evaluate the biological properties of capless mutants of Mycobacterium marinum and M. bovis BCG, made by inactivating homologues of Rv1635c. We show that its gene product is an undecaprenyl phosphomannose-dependent mannosyltransferase. Compared with parent strain, capless M. marinum induced slightly less uptake by and slightly more phagolysosome fusion in infected macrophages but this did not lead to decreased survival of the bacteria in vitro, nor in vivo in zebra fish. Loss of caps in M. bovis BCG resulted in a sometimes decreased binding to human dendritic cells or DC-SIGN-transfected Raji cells, but no differences in IL-10 induction were observed. In mice, capless M. bovis BCG did not survive less well in lung, spleen or liver and induced a similar cytokine profile. Our data contradict the current paradigm and demonstrate that mannose-capped LAM does not dominate the Mycobacterium-host interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.