BackgroundAmikacin and kanamycin are mainly used for treating multidrug-resistant tuberculosis (MDR-TB), especially in developing countries where the burden of MDR-TB is highest. Their protracted use in MDR-TB treatment is known to cause dose-dependent irreversible hearing loss, requiring hearing aids, cochlear implants or rehabilitation. Therapeutic drug monitoring and regular audiological assessments may help to prevent or detect the onset of hearing loss, but these services are not always available or affordable in many developing countries. We aimed to compare the cumulative incidence of hearing loss among patients treated for MDR-TB with amikacin or kanamycin-based regimens, and to identify the most-at-risk patients, based on the real-life clinical practice experiences in Namibia.MethodsWe conducted a retrospective cohort study of patients treated with amikacin or kanamycin-based regimens in four public sector MDR-TB treatment sites in Namibia between June 2004 and March 2014. Patients were audiologically assessed as part of clinical care. The study outcome was the occurrence of any hearing loss. Data were manually extracted from patients’ treatment records. We compared proportions using the Chi-square test; applied stratified analysis and logistic regression to study the risk of hearing loss and to identify the most-at-risk patients through effect-modification analysis. A P-value < 0.05 was statistically significant.ResultsAll 353 patients had normal baseline hearing, 46 % were HIV co-infected. Cumulative incidence of any hearing loss was 58 %, which was mostly bilateral (83 %), and mild (32 %), moderate (23 %), moderate-severe (16 %), severe (10 %), or profound (15 %). Patients using amikacin had a greater risk of developing the more severe forms of hearing loss than those using kanamycin (adjusted odds ratio (OR) = 4.0, 95 % CI: 1.5–10.8). Patients co-infected with HIV (OR = 3.4, 95 % CI: 1.1–10.6), males (OR = 4.5, 95 %1.5–13.4) and those with lower baseline body weight (40–59 kg, OR = 2.8, 95 % CI: 1.1–6.8), were most-at-risk of developing hearing loss.ConclusionAmikacin use in the long-term MDR-TB treatment led to a higher risk of occurrence of the more severe forms of hearing loss compared to kanamycin use. Males, patients with low baseline body weight and those co-infected with HIV were most-at-risk. MDR-TB treatment programmes should consider replacing amikacin with kanamycin and strengthen the routine renal, serum therapeutic drug levels and audiometric monitoring in the most-at-risk patients treated with aminoglycosides.Electronic supplementary materialThe online version of this article (doi:10.1186/s40360-015-0036-7) contains supplementary material, which is available to authorized users.
BackgroundTo describe the epidemiology and possible risk factors for the development of multidrug-resistant tuberculosis (MDR-TB) in Namibia.MethodsUsing medical records and patient questionnaires, we conducted a case-control study among patients diagnosed with TB between January 2007 and March 2009. Cases were defined as patients with laboratory-confirmed MDR-TB; controls had laboratory-confirmed drug-susceptible TB or were being treated with WHO Category I or Category II treatment regimens.ResultsWe enrolled 117 MDR-TB cases and 251 TB controls, of which 100% and 2% were laboratory-confirmed, respectively. Among cases, 97% (113/117) had been treated for TB before the current episode compared with 46% (115/251) of controls (odds ratio [OR] 28.7, 95% confidence interval [CI] 10.3–80.5). Cases were significantly more likely to have been previously hospitalized (OR 1.9, 95% CI 1.1–3.5) and to have had a household member with MDR-TB (OR 5.1, 95% CI 2.1–12.5). These associations remained significant when separately controlled for being currently hospitalized or HIV-infection.ConclusionsMDR-TB was associated with previous treatment for TB, previous hospitalization, and having had a household member with MDR-TB, suggesting that TB control practices have been inadequate. Strengthening basic TB control practices, including expanding laboratory confirmation, directly observed therapy, and infection control, are critical to the prevention of MDR-TB.
Setting: Directly Observed Treatment Short-course is a key pillar of the global strategy to end tuberculosis. Objective: The effectiveness of community-based compared to facility-based DOTS on tuberculosis treatment success rates in Namibia was assessed. Methods: Annual tuberculosis treatment success, cure, completion and case notification rates were compared between 1996 and 2015 by interrupted time series analysis. The intervention was the upgrading by the Namibian government of the tuberculosis treatment strategy from facility-based to community-based DOTS in 2005.Results: The mean annual treatment success rate during the pre-intervention period was 58.9% (range: 46-66%) and significantly increased to 81.3% (range: 69-87%) during the post-intervention period. Before the intervention there was a non-significant increase (0.3%/year) in the annual treatment success rate. After the intervention, the annual treatment success rate increased abruptly by 12.9% (p <0.001) and continued to increase by 1.1%/year thereafter. The treatment success rate seemed to have stagnated at approximately 85% at the end of the observation period. Conclusion:Expanding facility-based DOTS to community-based DOTS significantly increased the annual treatment success rates. However, the treatment success rate at the end of the observation period had stagnated below the targeted 95% success rate.
The study identified access barriers to ART for HIV-positive TB patients and their relevance in Namibia. The findings provide evidence for tailored interventions to increase ART-uptake among HIV-positive TB patients.
Background In 2016, Namibia had ~ 230,000 people living with HIV (PLHIV) and 9154 new tuberculosis (TB) cases, including 3410 (38%) co-infected cases. TB preventative therapy (TPT), consisting of intensive case finding and isoniazid preventative therapy, is critical to reducing TB disease and mortality. Methods Between November 2014 and February 2015, data was abstracted from charts of PLHIV enrolled in HIV treatment. Fifty-five facilities were purposively selected based on patient volume, type and location. Charts were randomly sampled. The primary outcome was to estimate baseline TPT in PLHIV, using nationally weighted proportions. Qualitative surveys were conducted and summarized to evaluate TPT practices and quantify challenges encountered by health care workers (HCW). Results Among 861 PLHIV sampled, 96% were eligible for TPT services, of which 87.1% were screened for TB at least once. For PLHIV eligible for preventative therapy (646/810; 82.6%), 45.4% (294/646) initiated therapy and 45.7% (139/294) of those completed therapy. The proportion of eligible PLHIV completing TB screening, initiating preventative therapy and then completing preventative therapy was 20.7%. Qualitative surveys with 271 HCW identified barriers to TPT implementation including: lack of training (61.3% reported receiving training on TPT); misunderstandings about timing of TPT initiation (46.7% correctly reported TPT should be started with antiretroviral therapy); and variable screening practices and responsibilities (66.1% of HCWs screened for TB at every encounter). Though barriers were evident, 72.2% HCWs surveyed described their clinical performance as very good, often placing responsibility of difficulties on patients and downplaying challenges like staff shortages and medication stock outs. Conclusions In this study, only 1 in 5 eligible PLHIV completed the TPT cascade in Namibia. Lack of training, irregularities with TB screening and timing of TPT, unclear prescribing and recording responsibilities, and a clinical misperception may have contributed to suboptimal programmatic implementation. Addressing these challenges will be critical with continued TPT scale-up.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.