(2016). Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine. Journal of Hydrology, Application of artificial neural network coupled with genetic algorithm and simulated annealing to solve groundwater inflow problem to an advancing open pit mine
AbstractIn this study, hybrid models are designed to predict groundwater inflow to an advancing open pit mine and the hydraulic head (HH) in observation wells at different distances from the centre of the pit during its advance. Hybrid methods coupling artificial neural network (ANN) with genetic algorithm (GA) methods (ANN-GA), and simulated annealing (SA) methods (ANN-SA), were utilised. Ratios of depth of pit penetration in aquifer to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the HH in the observation wells to the distance of observation wells from the centre of the pit were used as inputs to the networks. To achieve the objective two hybrid models consisting of ANN-GA and ANN-SA with 4-5-3-1 arrangement were designed. In addition, by switching the last argument of the input layer with the argument of the output layer of two earlier models, two new models were developed to predict the HH in the observation wells for the period of the mining process. The accuracy and reliability of models are verified by field data, results of a numerical finite element model using SEEP/W, outputs of simple ANNs and some well-known analytical solutions. Predicted results obtained by the hybrid methods are closer to the field data compared to the outputs of analytical and simple ANN models. Results show that despite the use of fewer and simpler parameters by the hybrid models, the ANN-GA and to some extent the ANN-SA have the ability to compete with the numerical models.
AbstractIn this study, hybrid models are designed to predict groundwater inflow to an advancing open pit mine and the hydraulic head (HH) in observation wells at different distances from the centre of the pit during its advance. Hybrid methods coupling artificial neural network (ANN) with genetic algorithm (GA) methods (ANN-GA), and simulated annealing (SA) methods (ANN-SA), were utilised. Ratios of depth of pit penetration in aquifer to aquifer thickness, pit bottom radius to its top radius, inverse of pit advance time and the HH in the observation wells to the distance of observation wells from the centre of the pit were used as inputs to the networks. To achieve the objective two hybrid models consisting of ANN-GA and ANN-SA with 4-5-3-1 arrangement were designed. In addition, by switching the last argument of the input layer with the argument of the output layer of two earlier models, two new models were developed to predict the HH in the observation wells for the period of the mining process. The accuracy and reliability of models are verified by field data, results of a numerical finite element model using SEEP/W, outputs of simple ANNs and some well-known ana...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.