Neuroblastoma (NB) is a rapidly growing, wellvascularized childhood cancer that often presents with metastases. The overall five-year survival in NB is approximately 45% despite multimodality treatment, and therefore there is a clinical need for new therapeutic strategies. NB frequently overexpresses the angiogenic factor VEGF (vascular endothelial growth factor). The aim of this study was to investigate the effect of bevacizumab (Avastin®, Genentech/Roche), a humanized anti-VEGF-A antibody, on NB growth in three different xenograft models, chosen to resemble high-risk NB. The human NB cell lines SK-N-AS, IMR-32 and SH-SY5Y, which are poorly differentiated and overexpress VEGF-A, were injected s.c. in immunodeficient mice. Bevacizumab was given intraperitoneally twice weekly at 5 mg/kg body weight, starting at a tumor volume of 0.3 mL. Bevacizumab significantly (p Ͻ 0.01-0.05) reduced NB growth in vivo without toxicity by causing a 30 -63% reduction of angiogenesis, but had no effect on NB cell survival in vitro. Serum concentrations of VEGF-A increased two-to six-fold during bevacizumab therapy which did not result in faster tumor growth compared with control animals. Based on our experimental data we suggest consideration of bevacizumab in treatment of highrisk NB that does not respond to conventional therapy and that overexpresses VEGF. (Pediatr Res 60: 576-581, 2006)
PHT-induced cleft palate was preceded by embryonic dysrhythmia and hemorrhage in the orofacial region. Embryonic heart rhythm was phase specifically affected, as described for selective I(Kr) channel blockers, at clinically relevant concentrations. The results support the idea that PHT teratogenicity is a consequence of pharmacologically induced dysrhythmia and hypoxia-related damage.
Class III antiarrhythmic drugs, like almokalant, dofetilide and ibutilide, cause a spectrum of malformations in experimental teratology studies. The pattern of developmental toxic effects is very similar to those reported for phenytoin, which is an established human and animal teratogen. The toxic effects are characterised by embryonic death, decreased fetal weights, and stage specific malformations, such as distal digital reductions, orofacial clefts and cardiovascular defects. Class III antiarrhythmics decrease the excitability of cardiac cells by selectively blocking the rapid component of the delayed rectified potassium channel (IKr), resulting in prolongation of the repolarisation phase of the action potential. Phenytoin, which decrease the excitability of neurones, has recently also been shown to block IKr, in addition to its known blockade of sodium channels. Animal studies indicate that IKr is expressed in the embryo and that the embryonic heart is extremely susceptible to IKr-blockers during a restricted period in early development. At concentrations not affecting the maternal heart, the embryonic heart reacts with bradycardia, arrhythmia and cardiac arrest when exposed to such drugs. Available studies strongly support the idea that birth defects after in utero exposure to both selective and non-selective IKr-blockers (like phenytoin) are initiated by concentration dependent embryonic bradycardia/arrhythmia resulting in 1) hypoxia; explaining embryonic death and growth retardation, 2) episodes of severe hypoxia, followed by generation of reactive oxygen species within the embryo during reoxygenation, causing orofacial clefts and distal digital reductions, and 3) alterations in embryonic blood flow and blood pressure, inducing cardiovascular defects.
Summary:Purpose: There is evidence that drug-induced embryonic arrhythmia initiates phenytoin (PHT) teratogenicity. The arrhythmia, which links to the potential of PHT to inhibit a specific potassium channel (I kr ), may result in episodes of embryonic ischemia and generation of reactive oxygen species (ROS) at reperfusion. This study sought to determine whether the proposed mechanism might be relevant for the teratogenic antiepileptic drug trimethadione (TMO).Methods: Effects on embryonic heart rhythm during various stages of organogenesis were examined in CD-1 mice after maternal administration (125-1,000 mg/kg) of dimethadione (DMO), the pharmacologically active metabolite of TMO. Palatal development was examined after administration of a teratogenic dose of DMO and after simultaneous treatment with DMO and a ROS-capturing agent (␣-phenyl-N-tert-butylnitrone; PBN). The I kr blocking potentials of TMO and DMO were investigated in HERG-transfected cells by using voltage patch-clamping tests.Results: DMO caused stage-specific (gestation days 9-13 only) and dose-dependent embryonic bradycardia and arrhythmia at clinically relevant maternal plasma concentrations (3-11 mM). Hemorrhage in the nasopharyngeal part of the embryonic palate (within 24 h) preceded cleft palate in fetuses at term. Simultaneous treatment with PBN significantly reduced the incidence of DMO-induced cleft palate, from 40 to 13%. Voltage patch-clamping studies showed that particularly DMO (70% inhibition), but also TMO, had I kr blocking potential at clinically relevant concentrations.Conclusions: TMO teratogenicity, in the same way as previously shown for PHT, was associated with I kr -mediated episodes of embryonic cardiac arrhythmia and hypoxia/ reoxygenation damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.