Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator which is orally used for treatment of osteoporosis and prevention of breast cancer. The drug has low aqueous solubility and bioavailability. The aim of the present study is to formulate and characterize oil-in-water microemulsion systems for oral delivery of RLX. To enhance the drug aqueous solubility, microemulsion based on sesame oil was prepared. Sesame oil and Tween 80 were selected as the drug solvent oil and surfactant, respectively. In the first and second formulations, Edible glycerin and Span 80 were applied as co-surfactant, respectively. Pseudo-ternary phase diagrams showed that the best surfactant/co-surfactant ratios in the first and second formulations were 4:1 and 9:1, respectively. The particle size of all free drug-loaded and drug loaded samples were in the range of 31.25 ± 0.3 nm and 60.9 ± 0.1 nm, respectively. Electrical conductivity coefficient and refractive index of all microemulsion samples confirmed the formation of oil-in-water type of microemulsion. In vitro drug release profile showed that after 24 hours, 46% and 63% of the drug released through the first formulation in 0.1% (w/v) Tween 80 in distilled water as a release medium and phosphate buffer solution (PBS) at pH = 5.5, respectively. These values were changed to 57% and 98% for the second formulation. Results confirmed that the proposed microemulsion system containing RLX could improve and control the drug release profile in comparison to conventional dosage form.
Leishmaniasis is a parasitic disease caused by Leishmania parasites. Meglumine antimoniate, or Glucantime, is the primary drug used to treat this disease. Glucantime with a standard painful injection administration route has high aqueous solubility, burst release, a significant tendency to cross into aqueous medium, rapid clearance from the body, and insufficient residence time at the injury site. Topical delivery of Glucantime can be a favorable option in the treatment of localized cutaneous leishmaniasis. In this study, a suitable transdermal formulation in the form of nanostructured lipid carrier (NLC)-based hydrogel containing Glucantime was prepared. In vitro drug release studies confirmed controllable drug release behavior for hydrogel formulation. An in vivo permeation study on healthy BALB/C female mice confirmed appropriate penetration of hydrogel into the skin and sufficient residence time in the skin. In vivo performance of the new topical formulation on the BALB/C female mice showed a significant improvement in reduction of leishmaniasis wound size, lowering parasites number in lesions, liver, and spleen compared with commercial ampule. Hematological analysis showed a significant reduction of the drug’s side effects, including variance of enzymes and blood factors. NLC-based hydrogel formulation is proposed as a new topical administration to replace the commercial ampule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.