Sonoelectrochemistry is the combination of ultrasound and electrochemistry which provides many advantages in electrochemistry, such as fast reaction rates, surface cleaning and activation, and increased mass transport at an electrode. Due to the advantages, some efforts have been made in order to benefit sonoelectrochemistry in the field of energy and environmental engineering. This review paper highlights the developed progress of the application of sonoelectrochemistry in the production of hydrogen, electrocatalyst materials and electrodes for fuel cells and semiconductor photocatalyst materials. This review also provides the experimental methods that are utilized in several sonoelectrochemical techniques, such as different set-ups generally used for the synthesis of energy-related materials. Different key parameters in the operation of sonoelectrochemical synthesis including ultrasonication time, ultrasound frequency and operation current have been also discussed. There are not many research articles on the sonoelectrochemical production of materials for supercapacitors and water electrolyzers which play crucial roles in the renewable energy industry. Therefore, at the end of this review, some articles which have reported the use of ultrasound for the production of electrocatalysts for supercapacitors and electrolyzers have been reviewed. The current review might be helpful for scientists and engineers who are interested in and working on sonoelectrochemistry and electrocatalyst synthesis for energy storage and energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.