Mathematical models have made considerable contributions to our understanding of HIV dynamics. Introducing time delays to HIV models usually brings challenges to both mathematical analysis of the models and comparison of model predictions with patient data. In this paper, we incorporate two delays, one the time needed for infected cells to produce virions after viral entry and the other the time needed for the adaptive immune response to emerge to control viral replication, into an HIV-1 model. We begin model analysis with proving the positivity and boundedness of the solutions, local stability of the infection-free and infected steady states, and uniform persistence of the system. By developing a few Lyapunov functionals, we obtain conditions ensuring global stability of the steady states. We also fit the model including two delays to viral load data from 10 patients during primary HIV-1 infection and estimate parameter values. Although the delay model provides better fits to patient data (achieving a smaller error between data and modeling prediction) than the one without delays, we could not determine which one is better from the statistical standpoint. This highlights the need of more data sets for model verification and selection when we incorporate time delays into mathematical models to study virus dynamics.
SUMMARYThis paper presents a numerical study of the sensitivity of an eddy viscosity model with respect to the variation of the eddy viscosity parameter for the two-dimensional driven cavity problem and ow around a cylinder. The main objective is to provide a comparison between computing the sensitivity using sensitivity equation and computing the sensitivity using ÿnite di erence methods and also numerically illustrate the application of the sensitivity computations in improving drag ow functional.
This study presents two computational schemes for the numerical approximation of solutions to eddy viscosity models as well as transient Navier-Stokes equations. The eddy viscosity model is one example of a class of Large Eddy Simulation models, which are used to simulate turbulent flow. The first approximation scheme is a first order single step method that treats the nonlinear term using a semi-implicit discretization. The second scheme employs a two step approach that applies a Crank-Nicolson method for the nonlinear term while also retaining the semi-implicit treatment used in the first scheme. A finite element approximation is used in the spatial discretization of the partial differential equations. The convergence analysis for both schemes is discussed in detail, and numerical results are given for two test problems one of which is the two dimensional flow around a cylinder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.