A warming climate is associated with increasing hydroclimatic extremes, which are often interconnected through complex processes, prompting their concurrence and/or succession, and causing compound extreme events. It is critical to analyze the risks of compound events, given their disproportionately high adverse impacts. To account for the variability in two or more hydroclimatic variables (e.g., temperature and precipitation) and their dependence, a rising number of publications focuses on multivariate analysis, among which the notion of copula‐based probability distribution has attracted tremendous interest. Copula is a mathematical function that expresses the joint cumulative probability distribution of multiple variables. Our focus is to re‐emphasize the fundamental requirements and limitations of applying copulas. Confusion about these requirements may lead to misconceptions and pitfalls, which can potentially compromise the robustness of risk analyses for environmental processes and natural hazards. We conducted a systematic literature review of copulas, as a prominent tool in the arsenal of multivariate methods used for compound event analysis, and underpinned them with a hydroclimatic case study in Sweden to illustrate a practical approach to copula‐based modeling. Here, we (1) provide end‐users with a didactic overview of necessary requirements, statistical assumptions and consequential limitations of copulas, (2) synthesize common perceptions and practices, and (3) offer a user‐friendly decision support framework to employ copulas, thereby support researchers and practitioners in addressing hydroclimatic hazards, hence demystify what can be an area of confusion. This article is categorized under: Science of Water > Hydrological Processes Science of Water > Methods
Predicting floods and droughts is essential to inform the development of policy in water management, climate change adaptation and disaster risk reduction. Yet, hydrological predictions are highly uncertain, while the frequency, severity and spatial distribution of extreme events are further complicated by the increasing impact of human activities on the water cycle. In this commentary, we argue that four main aspects characterizing the complexity of human‐water systems should be explicitly addressed: feedbacks, scales, tradeoffs and inequalities. We propose the integration of multiple research methods as a way to cope with complexity and develop policy‐relevant science.
Abstract. For most hydroclimatic applications, precipitation and temperature are of particular interest as they strongly affect the water cycle, can easily be measured and are often readily available from many meteorological stations worldwide. To account for precipitation and temperature variability, their co-dependence and their correlation, several multivariate analysis methods have been adopted in the hydroclimatic literature in recent years. In line with the steadily rising number of publications on this topic, the notion of copula-based probability distribution has also attracted tremendous interest to deal with the complexity of compound events in the multidimensional context. A copula is a function that connects a multivariate distribution to its one-dimensional margins, which allows for a joint distribution of random variables with great flexibility for the marginal distribution. However, there seems to be a lack of comprehensive understanding of the fundamental requirements of the copula concept such as the strength and significance of correlation between variables, autocorrelation effects and the choice of representative copula families, which potentially compromises the robustness of projections of future environmental processes and natural hazards. Therefore, by combining a systematic literature review with a specific hydroclimatic case study in Sweden, we illustrate a practical approach to copula-based modeling, which (1) provides end-users with an overview of necessary requirements, statistical assumptions and consequential limitations of copulas, (2) highlights possible pitfalls and misconceptions, and (3) offers a decision support framework for the application of copulas to support researchers and decision makers in addressing climatological hazards and sustainable development, thereby demystifying what is currently an area of great confusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.