Decreased serotonergic activity has been implicated in anxiety and major depression, and antidepressants directly or indirectly increase the long-term activity of the serotonin system. A key component of serotonin circuitry is the 5-HT1A autoreceptor, which functions as the major somatodendritic autoreceptor to negatively regulate the “gain” of the serotonin system. In addition, 5-HT1A heteroreceptors are abundantly expressed post-synaptically in the prefrontal cortex (PFC), amygdala, and hippocampus to mediate serotonin actions on fear, anxiety, stress, and cognition. Importantly, in the PFC 5-HT1A heteroreceptors are expressed on at least two antagonist neuronal populations: excitatory pyramidal neurons and inhibitory interneurons. Rodent models implicate the 5-HT1A receptor in anxiety- and depression-like phenotypes with distinct roles for pre- and post-synaptic 5-HT1A receptors. In this review, we present a model of serotonin-PFC circuitry that integrates evidence from mouse genetic models of anxiety and depression involving knockout, suppression, over-expression, or mutation of genes of the serotonin system including 5-HT1A receptors. The model postulates that behavioral phenotype shifts as serotonin activity increases from none (depressed/aggressive not anxious) to low (anxious/depressed) to high (anxious, not depressed). We identify a set of conserved transcription factors including Deaf1, Freud-1/CC2D1A, Freud-2/CC2D1B and glucocorticoid receptors that may confer deleterious regional changes in 5-HT1A receptors in depression, and how future treatments could target these mechanisms. Further studies to specifically test the roles and regulation of pyramidal vs. interneuronal populations of 5-HT receptors are needed better understand the role of serotonin in anxiety and depression and to devise more effective targeted therapeutic approaches.
To identify neuronal populations possibly contributing to the sympathetic hyperactivity in rats with congestive heart failure (CHF) after myocardial infarction (MI), immunohistochemical detection of Fra-like immunoreactivity (Fra-LI) was used as a marker of long-term neuronal activation. In adult Wistar rats, 2 and 4 wk after left coronary artery ligation, left ventricular (LV) peak systolic pressure and LV end-diastolic pressure were measured, immediately followed by transcardial perfusion and removal of the heart and brain. The brains were processed using an antibody that recognizes Fos, FosB, Fra-1, and Fra-2 for the detection of Fra-LI and using an antibody that only recognizes Fos-like immunoreactivity (Fos-LI). At both 2 and 4 wk after large MI, LV peak systolic pressure was significantly decreased and LV end-diastolic pressure increased. At 2 wk post-MI or sham surgery, Fra-LI was observed in several areas of either group but was significantly higher in the MI versus the sham group in the magnocellular division of the paraventricular nucleus (PVN), supraoptic nucleus (SON), subfornical organ, and caudal part of the nucleus of the solitary tract. At 4 wk after large MI, Fra-LI was clearly detected in the parvocellular and magnocellular divisions of the PVN, SON, and locus ceruleus. Modest expression was noted in these nuclei in rats with small MI, whereas Fra-like positive immunoreactive neurons were barely detectable in the sham group 4 wk postsurgery. In these nuclei, the extent of expression of Fra-LI correlated significantly with the LV end-diastolic pressure. Fos-LI was only noted in the cerebral cortex. These results indicate clear activation of neurons as identified by Fra-LI in specific cardiovascular control centers in rats with CHF 2 and 4 wk post-MI.
Post-stroke depression (PSD) is a common outcome following stroke that is associated with poor recovery. To develop a preclinical model of PSD, we targeted a key node of the depression–anxiety circuitry by inducing a unilateral ischemic lesion to the medial prefrontal cortex (mPFC) stroke. Microinjection of male C57/BL6 mice with endothelin-1 (ET-1, 1600 pmol) induced a small (1 mm3) stroke consistently localized within the left mPFC. Compared with sham control mice, the stroke mice displayed a robust behavioral phenotype in four validated tests of anxiety including the elevated plus maze, light–dark, open-field and novelty-suppressed feeding tests. In addition, the stroke mice displayed depression-like behaviors in both the forced swim and tail suspension test. In contrast, there was no effect on locomotor activity or sensorimotor function in the horizontal ladder, or cylinder and home cage activity tests, indicating a silent stroke due to the absence of motor abnormalities. When re-tested at 6 weeks post stroke, the stroke mice retained both anxiety and depression phenotypes. Surprisingly, at 6 weeks post stroke the lesion site was infiltrated by neurons, suggesting that the ET-1-induced neuronal loss in the mPFC was reversible over time, but was insufficient to promote behavioral recovery. In summary, unilateral ischemic lesion of the mPFC results in a pronounced and persistent anxiety and depression phenotype with no evident sensorimotor deficits. This precise lesion of the depression circuitry provides a reproducible model to study adaptive cellular changes and preclinical efficacy of novel interventions to alleviate PSD symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.