Recent advancements in deep learning have led to widespread applications of its algorithms to synthetic planning and reaction predictions in the field of chemistry. One major area, known as supervised learning, is being explored for predicting certain properties such as reaction yields and types. Many chemical descriptors known as fingerprints are being explored as potential candidates for reaction properties prediction. However, there are few studies that describe the permutational invariance of chemical fingerprints, which are concatenated at some stage before being fed to deep learning architecture. In this work, we show that by utilizing permutational invariance, we consistently see improved results in terms of accuracy relative to previously published studies. Furthermore, we are able to accurately predict hydrogen peroxide loss with our own dataset, which consists of more than 20 ingredients in each chemical formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.