We describe the self-folding of photopatterned poly (ethylene glycol) (PEG)-based hydrogel bilayers into curved and anatomically relevant micrometer-scale geometries. The PEG bilayers consist of two different molecular weights (MWs) and are photocrosslinked en masse using conventional photolithography. Self-folding is driven by differential swelling of the two PEG bilayers in aqueous solutions. We characterize the self-folding of PEG bilayers of varying composition and develop a finite element model which predicts radii of curvature that are in good agreement with empirical results. Since we envision the utility of bio-origami in tissue engineering, we photoencapsulate insulin secreting β-TC-6 cells within PEG bilayers and subsequently self-fold them into cylindrical hydrogels of different radii. Calcein AM staining and ELISA measurements are used to monitor cell proliferation and insulin production respectively, and the results indicate cell viability and robust insulin production for over eight weeks in culture.
Click chemistry is a versatile tool for the synthesis and functionalization of polymeric biomaterials. Here, we describe a versatile new strategy for producing bioactive, protein-functionalized poly(ethylene glycol) (PEG) hydrogel microparticles that is based on sequential thiol-ene and tetrazine click reactions. Briefly, tetra-functional PEG-norbornene macromer and dithiothreitol (SH) cross-linker were combined at a 0.75:1 [SH]:[norbornene] ratio, emulsified in a continuous Dextran phase, and then photopolymerized to form PEG hydrogel microparticles that varied from 8 to 30 μm in diameter, depending on the PEG concentration used. Subsequently, tetrazine-functionalized protein was conjugated to unreacted norbornene groups in the PEG microparticles. Tetrazine-mediated protein tethering to the microparticles was first demonstrated using fluorescein-labeled ovalbumin as a model protein. Subsequently, bioactive protein tethering was demonstrated using alkaline phosphatase (ALP) and glucose oxidase (GOx). Enzyme activity assays demonstrated that both ALP and GOx maintained their bioactivity and imparted tunable bioactivity to the microparticles that depended on the amount of enzyme added. ALP-functionalized microparticles were also observed to initiate calcium phosphate mineralization in vitro when incubated with calcium glycerophosphate. Collectively, these results show that protein-functionalized hydrogel microparticles with tunable bioactive properties can be easily synthesized using sequential click chemistry reactions. This approach has potential for future applications in tissue engineering, drug delivery, and biosensing.
The discovery of tetrazine click‐induced secondary interactions is reported as a promising new tool for polymeric biomaterial synthesis. This phenomenon is first demonstrated as a tool for poly(ethylene glycol) (PEG) hydrogel assembly via purely non‐covalent interactions and is shown to yield robust gels with storage moduli one to two orders of magnitude higher than other non‐covalent crosslinking methods. In addition, tetrazine click‐induced secondary interactions also enhance the properties of covalently crosslinked hydrogels. A head‐to‐head comparison of PEG hydrogels crosslinked with tetrazine‐norbornene and thiol‐norbornene click chemistry reveals an approximately sixfold increase in storage modulus and unprecedented resistance to hydrolytic degradation in tetrazine click‐crosslinked gels without substantial differences in gel fraction. Molecular dynamic simulations attribute these differences to the presence of secondary interactions between the tetrazine‐norbornene cycloaddition products, which are absent in the thiol‐norbornene crosslinked gels.
Microporous annealed particle (MAP) hydrogels are an emerging class of biomaterials with the potential to improve outcomes in tissue repair and regeneration. Here, a new MAP hydrogel platform comprising poly(ethylene) glycol (PEG) hydrogel microparticles that are annealed in situ using bio-orthogonal tetrazine click chemistry is reported (i.e., TzMAP hydrogels). Briefly, clickable PEG–peptide hydrogel microparticles with extracellular matrix mimetic peptides to permit cell adhesion and enzymatic degradation were fabricated via submerged electrospraying and stoichiometrically controlled thiol–norbornene click chemistry. Subsequently, unreacted norbornene groups in the microparticles were leveraged for functionalization with bioactive proteins as well as annealing into TzMAP hydrogels via the tetrazine–norbornene click reaction, which is highly selective and proceeds spontaneously without requiring an initiator or catalyst. The results demonstrate that the clickable particles can be easily applied to a tissue-like defect and then annealed into an inherently microporous structure in situ. In addition, the ability to produce TzMAP hydrogels with heterogeneous properties by incorporating multiple types of hydrogel microspheres is demonstrated, first with fluorophore-functionalized hydrogel microparticles and then with protein-functionalized hydrogel microparticles. For the latter, tetrazine-modified alkaline phosphatase was conjugated to PEG hydrogel microparticles, which were mixed with nonfunctionalized microparticles and used to produce TzMAP hydrogels. A biomimetic mineralized/nonmineralized interface was then produced upon incubation in calcium glycerophosphate. Finally, platelet-derived growth factor-BB (PDGF-BB) and human periodontal ligament stem cells (PDLSC) were incorporated into the TzMAP hydrogels during the annealing step to demonstrate their potential for delivering regenerative therapeutics, specifically for periodontal tissue regeneration. In vitro characterization revealed excellent PDGF-BB retention as well as PDLSC growth and spreading. Moreover, PDGF-BB loading increased PDLSC proliferation within hydrogels by 90% and more than doubled the average volume per cell. Overall, these results demonstrate that TzMAP hydrogels are a versatile new platform for the delivery of stem cells and regenerative factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.