The growing use of nanosized titanium dioxide (nTiO2) and zinc oxide (nZnO) in a large number of commercial products raises concerns regarding their release and subsequent mobility in natural aquatic environments. Laboratory-scale sand-packed column experiments were conducted with bare and polymer-coated nTiO2 and nZnO to improve our understanding of the mobility of these nanoparticles in natural or engineered water saturated granular systems. The nanoparticles are characterized over a range of environmentally relevant water chemistries using multiple complimentary techniques: dynamic light scattering, nanoparticle tracking analysis, transmission electron microscopy, and scanning electron microscopy. Overall, bare (uncoated) nanoparticles exhibit high retention within the water saturated granular matrix at solution ionic strengths (IS) as low as 0.1 mM NaNO3 for bare nTiO2 and 0.01 mM NaNO3 for bare nZnO. Bare nTiO2 and nZnO also display dynamic (time-dependent) deposition behaviors under selected conditions. In contrast, the polymer-coated nanoparticles are much less likely to aggregate and exhibit significant transport potential at IS as high as 100 mM NaNO3 or 3 mM CaCl2. These findings illustrate the importance of considering the extent and type of surface modification when evaluating metal oxide contamination potential in granular aquatic environments.
Nanotechnology is increasingly important in the agricultural sector, with novel products being developed to heighten crop yields and increase pesticide efficacy. Herein, the transport potential of different polymeric nanocapsules (nCAPs) developed as pesticide delivery vehicles was assessed in model soil systems. The nCAPs examined are (i) poly(acrylic acid)-based (nCAP1), (ii) poly(methacrylic acid)-ran-poly(ethyl acrylate) copolymer-based (nCAP2), (iii) poly(methacrylic acid-ran-styrene) copolymer-based (nCAP3), and (iv) poly(methacrylic acid-ran-butylmethacrylate)-based (nCAP4). nCAP mobility was examined in columns packed with agricultural loamy sand saturated with artificial porewater containing Ca and Mg cations (10 mM ionic strength, pH 6 and 8). Furthermore, the impact of (i) cation species, (ii) sand type, and (iii) ammonium polyphosphate fertilizer on the transport potential of a nanoformulation combining nCAP4 capsules and the pyrethroid bifenthrin (nCAP4-BIF) was examined and compared to a commercial bifenthrin formulation (Capture LFR). Although nCAP4-BIF and Capture LFR formulations were highly mobile in quartz sand saturated with 10 mM NaNO (≥95% elution), they were virtually immobile in the presence of 10% ammonium polyphosphate fertilizer. The presence of Ca and Mg did not hinder nCAP4-BIF elution in quartz sand saturated with 10 mM standard CIPAC D synthetic porewater; however, limited Capture LFR transport (<10% elution) was observed under the same conditions. Capture LFR also exhibited limited mobility in the presence or absence of fertilizer in loamy sand saturated with divalent salt solutions, whereas nCAP4-BIF exhibited increased elution with time and enhanced transport upon the addition of fertilizer. Overall, nCAP4 is a promising delivery vehicle in pyrethroid nanoformulations such as nCAP4-BIF.
The environmental and health risks posed by emerging engineered nanoparticles (ENPs) released into aquatic environments are largely dependent on their aggregation, transport, and deposition behavior. Herein, laboratory-scale columns were used to examine the mobility of polyacrylic acid (PAA)-coated cerium dioxide nanoparticles (nCeO2) and an analogous nanosized polymeric capsule (nCAP) in water saturated quartz sand or loamy sand. The influence of solution ionic strength (IS) and cation type (Na(+), Ca(2+), or Mg(2+)) on the transport potential of these ENPs was examined in both granular matrices and results were also compared to measurements obtained using a natural groundwater. ENP suspensions were characterized using dynamic light scattering and nanoparticle tracking analysis to establish aggregate size, and laser Doppler electrophoresis to determine ENP electrophoretic mobility. Regardless of IS, virtually all nCeO2 particles suspended in NaNO3 eluted from the quartz sand-packed columns. In contrast, heightened nCeO2 and nCAP particle retention and dynamic (time-dependent) transport behavior was observed with increasing concentrations of the divalent salts and in the presence of natural groundwater. Enhanced particle retention was also observed in loamy sand in comparison to the quartz sand, emphasizing the need to consider the nature of the aqueous matrix and granular medium in evaluating contamination risks associated with the release of ENPs in natural and engineered aquatic environments.
Amphiphilic block copolymers of short poly(styrene) (PS) or poly(2,3,4,5,6‐pentafluorostyrene) (PPFS) segments with comparatively longer poly(vinyl acetate) or poly(vinylpyrrolidone) (PVP) segments are synthesized using a 2‐cyanopropan‐2‐yl N‐methyl‐N‐(pyridin‐4‐yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent toward application as kinetic gas hydrate inhibitors (KHIs). Polymerization conditions are optimized to provide water‐soluble block copolymers by first polymerizing more activated monomers such as S and PFS to form a defined macro chain‐transfer agent (linear degree of polymerization with conversion, comparatively low dispersity) followed by chain extensions with less activated monomers VAc or VP by switching to the deprotonated form of the RAFT agent. The critical micelle concentrations of these amphiphilic block copolymers (after VAc unit hydrolysis to vinyl alcohol units) are measured using zeta surface potential measurements to estimate physical behavior once mixed with the hydrates. A PS‐poly(vinyl alcohol) block copolymer improved inhibition to 49% compared to the pure methane–water system with no KHIs. This inhibition was further reduced by 27% by substituting the PS with a more hydrophobic PPFS. A block copolymer of PS–PVP exhibited 20% greater inhibition than the PVP homopolymer and substituting PS with a more hydrophobic PPFS resulted in a 35% further decreased in methane KHI. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018, 56, 2445–2457, 56, 2445–2457
Macrosurfactants consisting of water-soluble poly(vinylcaprolactam) (PVCap) or poly(vinylpyrrolidone) (PVP) segments with comparatively shorter hydrophobic poly(styrene) (PS) or poly(2,3,4,5,6-pentafluorostyrene) (PPFS) segments were used as kinetic hydrate inhibitors (KHIs). These were synthesized with 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent at 60 °C or 90 °C for 1-P(S/PFS) or 1-PVCap, respectively, followed by chain extension at 90 °C or 70 °C with PVCap or PVP, respectively. The addition of PVCap to the pure methane-water system resulted in a 53% reduction of methane consumption (comparable to PVP with 51% inhibition) during the initial growth phase. A PS-PVCap block copolymer comprised of 10 mol% PS and 90 mol% PVCap improved inhibition to 56% compared to the pure methane-water system with no KHIs. Substituting PS with a more hydrophobic PPFS segment further improved inhibition to 73%. By increasing the ratio of the hydrophobic PS- to PVCap- groups in the polymer, an increase of its inhibition potential was measured. For PPFS-PVCap, an increase of PPFS ratio from 5% to 10% decreased the methane formation rate by 6%. However, PPFS-PVCap block copolymers with more than 20 mol% PPFS were unable to dissolve in water due to increase in hydrophobicity and the attendant low critical micelle concentration (CMC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.