Three‐dimensional (3D) bioprinting is a promising method for the fabrication of tissue engineering constructs. The bioprintable materials with cells or other biological parts, which are called bioinks, are arranged layer by layer and make multicellular structures. Not all materials can be printed, and a set of requirements should be met to formulate the appropriate bioink. Poly (ethylene glycol) (PEGDA), as a synthetic polymer, is a promising choice for regenerative medicine applications due to its biocompatibility, ease of crosslinking, and adjustability of its mechanical and chemical properties depending on the application. This review aims to guide and familiarize the reader with the PEGDA‐based bioink as a raw material of the 3D‐bioprinting method, its properties, and applications in soft and hard tissue engineering.
Cardiovascular diseases have always been one of the main causes of death worldwide and eventually one of the major medical concerns. Tissue engineering is promising strategies of treating cardiovascular, which can be an effective approach with the design of appropriate scaffold. In this study, to develop engineering basement membrane for endothelial differentiation with good cell attachment, we produced polycaprolactone (PCL)/poly (glycerol sebacate) (PGS)/gelatin nanofibrous scaffold via electrospinning. Attenuated total reflectance‐Fourier transform infrared and the proton nuclear magnetic resonance results confirmed the chemical structure of synthesized PGS. Scanning electron microscope images of the electrospun scaffold revealed that the nanofibers are smooth, continues and uniform. Moreover, due to the presence of hydrophilic functional groups in the scaffold, the contact angle is in the appropriate range for cell adhesion especially endothelial cells. The elastic modulus and ultimate tensile stress of electrospun scaffold were calculated 1.32 ± 0.27 MPa and 1.23 ± 0.18 MPa respectively. Quantitative polymerase chain reaction was performed for evaluation of endothelial differentiation of mesenchymal stem cells cultured on standard plate and fibrous scaffold under chemical stimulation with growth factor. Specific endothelial gene expression results postulated that our modified scaffold could support and significantly promote endothelial differentiation of MSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.