Animals with lead-induced hypertension exhibited oxidative stress which was associated with mild up-regulation of superoxide-generating enzyme, NAD(P)H oxidase, with no evidence of quantitative SOD, CAT or GPX deficiencies.
The present investigation was carried out to study the expression of major cytochrome P450 (CYP) isozymes in streptozotocin-induced diabetes with concomitant insulin therapy. Male Sprague-Dawley rats were randomly assigned to untreated control, streptozotocin-induced diabetic, insulin-treated groups and monitored for 4 weeks. Uncontrolled hyperglycemia in the early phase of diabetes resulted in differential regulation of cytochrome P450 isozymes. CYP1B1, CYP1A2, heme oxygenase (HO)-2 proteins and CYP1A2-dependent 7-ethoxyresorufin O-deethylase (EROD) activity were upregulated in the hepatic microsomes of diabetic rats. Insulin therapy ameliorated EROD activity and the expression of CYP1A2, CYP1B1 and HO-2 proteins. In addition, CYP2B1 and 2E1 proteins were markedly induced in the diabetic group. Insulin therapy resulted in complete amelioration of CYP2E1 whereas CYP2B1 protein was partially ameliorated. By contrast, CYP2C11 protein was decreased over 99% in the diabetic group and was partially ameliorated by insulin therapy. These results demonstrate widespread alterations in the expression of CYP isozymes in diabetic rats that are ameliorated by insulin therapy.
Chronic renal failure (CRF) is associated with oxidative stress, the precise mechanism of which is yet to be elucidated. The present study was undertaken to investigate in renal insufficiency the expression of catalase and glutathione peroxidase, which play a critical role in antioxidant defense system by catalyzing detoxification of hydrogen peroxide (H2O2) and organic hydroperoxides. Rats were randomly assigned to the CRF (5/6 nephrectomized) and sham-operated control groups and observed for 6 weeks. Renal and thoracic aortic catalase and glutathione peroxidase protein abundance was measured by Western blotting. The enzyme activities in the renal and aortic extracts, hepatic glutathione levels, blood pressure and urinary nitric oxide metabolites (NO(x)) excretion were also measured. Blood pressure and urinary nitric oxide metabolite (NO(x)) excretion were also measured. The CRF group showed a significant down-regulation of both immunodetectable catalase and glutathione peroxidase proteins in the remnant kidney. Catalase activity was also significantly decreased in the remnant kidney whereas glutathione peroxidase activity was not significantly affected. Furthermore, the protein abundance of catalase was unchanged whereas the enzyme activity was significantly decreased in the thoracic aorta of CRF animals compared to the sham-operated controls. By contrast, both the protein abundance and the enzyme activity of glutathione peroxidase were not significantly affected in the aorta of CRF animals compared to the sham-operated controls. This was coupled with marked arterial hypertension, significant reduction of hepatic glutathione levels and urinary NO(x) excretion pointing to increased inactivation and sequestration of NO by superoxide. These events point to the role of impaired antioxidant defense system in the pathogenesis of oxidative stress in CRF.
Background. There is mounting evidence that dyslipidaemia may contribute to development and progression of renal disease. For instance, hyperlipidaemia in apolipoprotein E-deficient (apoE −/−) mice is associated with glomerular inflammation, mesangial expansion and foam cell formation. ApoA-1 mimetic peptides are potent antioxidant and anti-inflammatory compounds which are highly effective in ameliorating atherosclerosis and inflammation in experimental animals. Given the central role of oxidative stress and inflammation in progression of renal disease, we hypothesized that apoA-1 mimetic peptide, D-4F, may attenuate renal lesions in apoE −/− mice. Methods. Twenty-five-month-old female apoE −/− mice were treated with D-4F (300 µg/mL in drinking water) or placebo for 6 weeks. Kidneys were harvested and examined for histological and biochemical characteristics. Results. Compared with the control mice, apoE −/− mice showed significant proteinuria, tubulo-interstitial inflammation, mesangial expansion, foam cell formation and up-regulation of oxidative [NAD(P)H oxidase subunits] and inflammatory [NF-κB, MCP-1, PAI-1 and COX-2] ApoE deficiency-induced nephropathy 3525
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.